A torque of magnitude 500Nm acts on a body of mass 16 and produces an angular acceleration of 20rad .the radius of gyration of the body
Answers
Answer:
Given:
Torque = 500 Nm
Mass = 16 kg.
Angular acceleration = 20 rad/s²
To find:
Radius of gyration of the body
Concept:
Radius of gyration is the radius of a circular ring having same Moment of Inertia as that of another object along a specified axis.
It is denoted by k
Calculation:
Now , we know that :
So final answer is :
Answer:
- The radius of gyration (K) is 1.25 meters.
Given:
- Torque (τ) = 500 N m.
- Mass of the body (M) = 16 Kg
- Angular Acceleration (α) = 20 rad / sec.
Explanation:
______________________
From the formula we Know,
⇒ τ = I α
Where,
- τ Denotes Torque.
- I Denotes Moment of Inertia.
- α Denotes Angular Acceleration.
Now,
⇒ τ = I α
Substituting the values,
⇒ 500 N/m = I × 20 rad/sec
⇒ 500 = I × 20
⇒ I = 500 / 20
⇒ I = 25
⇒ I = 25 Kg-m².
_______________________
_______________________
From the relation We know,
⇒ I = M K²
Where,
- I Denotes Moment of Inertia.
- M Denotes Mass
- K Denotes Radius of Gyration.
Now,
⇒ I = M K²
Substituting the values,
⇒ 25 Kg-m² = 16 Kg × K²
⇒ 25 = 16 × K²
⇒ K² = 25 / 16
⇒ K = √ (25 / 16)
⇒ K = 5 / 4
⇒ K = 1.25
⇒ K = 1.25 m.
∴ The radius of gyration (K) is 1.25 meters.
_______________________