Math, asked by jenaejefferson14, 1 year ago

a tower casts a shadow that is 60 feet long when the angle of elevation of the sun is 60 degrees. how tall is the tower

Answers

Answered by abhinavmishra74358
16

Answer:

Step-by-step explanation:

Hope you like the answer

Attachments:
Answered by Avengers00
39
\underline{\underline{\Huge{\textbf{Solution:}}}}


\setlength{\unitlength}{1.3 pt}\begin{picture}(100,100)(0,0)\put(0,10){\line(1,0){95}}\put(40,10){\line(0,1){55}}\put(95,10){\line(-1,1){85}}\multiput(0,65)(6,0){7}{\line(1,0){3}}\put(92,11){\circle{4}}\put(10,95){\circle*{20}}\put(38,66){\circle{1.6}}\put(24,40){$\sf{h\: ft}$}\put(15,50){$\bf{Tower}$}\put(60,0){$\sf{60\: ft}$}\put(20,68){$60^{\circ}$}\put(75,12){$60^{\circ}$}\put(10,105){$\bf Sun$}\put(40,3){$\sf B$}\put(40,68){$\sf A$}\put(95,3){$\sf C$}\end{picture}

\\

\textsf{Given,}

Length of the Shadow = 60 ft

Angle of elevation of the sun on the tower = 60^{\circ}

Height of the tower = ? (in ft)


\\
Let AB be the height of the tower

BC be the length of the Shadow

Now, we have a Right \rm{\triangle{ABC}}

We have Adjacent and Angle in the Right triangle. To find the Opposite we can Apply tan of Angle.

\LARGE{\mathbf{In\: \triangle{ABC}}}

\\
\LARGE{\boxed{\quad{\bigstar\; \; \tan\: \theta= \mathsf{\dfrac{Opposite\: (AB)}{Adjacent\: (BC)}}\quad}}}


Substitute values

\tan\: 60^{\circ}= \dfrac{h}{60}

\sqrt{3} = \dfrac{h}{60}

h = \rm{60\: \sqrt{3}\: ft}


\therefore

\blacksquare\; \; \textsf{The\: height\: of\: the\: tower is \:} \Large{\underline{\mathbf{60 \: \sqrt{3}\: ft}}}
Similar questions