Math, asked by laddu26, 1 year ago

a toy is in the form of a cone of radius 3.5 CM mounted on a hemisphere of the same radius the total height of the toy is 15.5 cm find the total surface area of the toy

Answers

Answered by ShírIey
26

Given:

  • Radius of the Hemisphere, r = 3.5 cm².
  • Height of the toy = 15.5 cm

To find:

  • The total surface area of the toy.

⠀⠀⠀⠀⠀ ━━━━━━━━━━━━━━━━━━━━ ⠀⠀⠀⠀⠀⠀⠀

\setlength{\unitlength}{1cm}\begin{picture}(6, 4)\linethickness{0.26mm}\qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){5.6}}\put(3,2){\line(0,2){4.5}}\put(1.5,1.7){\sf{3.5 cm}}\qbezier(.2,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(2,4){\sf 12 cm}\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\qbezier(0.2,2)(2.9,-2)(5.8,2)\end{picture}

⠀⠀⠀⠀⠀ ━━━━━━━━━━━━━━━━━━━━

Solution: Finding surface area of the Hemisphere.

⠀⠀⠀⠀⠀

\star\;\boxed{\sf{\pink{Surface\; area_{\;(Hemisphere)} = 2\pi r^2}}}

:\implies\sf 2 \times \dfrac{22}{7} \times 3.5 \times 3.5 \\\\\\:\implies\sf \dfrac{2 \times 22 \times 35 \times 35}{7 \times 10 \times 10} \\\\\\:\implies\boxed{\sf{77\;cm^2}}

To calculate Slant Height l,

  • Height of conical part, 15. 5 – 3.5 = 12 cm.

:\implies\boxed{\sf{\pink{(l)^2 = \sqrt{(r)^2 + (h)^2}}}}

where,

  • l is slant Height, r is radius and h is height.

Therefore,

:\implies\sf l^2 = \sqrt{(3.5)^2 + (12)^2} \\\\\\:\implies\sf  l^2 = \sqrt{12.25 + 144}\\\\\\:\implies\sf l^2 = \sqrt{156.25} \\\\\\:\implies{\underline{\boxed{\frak{\pink{l = 12.5\;cm}}}}}

\therefore{\underline{\sf{Hence,\;slant\; Height\; is\;  \bf{ 12.5\;cm}.}}}

⠀⠀⠀⠀⠀⠀ ━━━━━━━━━━━━━━━━━━━━

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}

⠀⠀⠀

\star\;\boxed{\sf{\pink{CSA_{\;(cone)} = \pi r l}}}

Therefore,

:\implies\sf \bigg(\dfrac{22}{7} \times 3.5 \times 12.5 \bigg)\\\\\\:\implies\sf \bigg(\dfrac{22}{7} \times \dfrac{35}{10} \times \dfrac{125}{10} \bigg) \\\\\\:\implies\sf \dfrac{275}{2}\;cm^2

  • Total surface area of the toy = Surface area of Hemisphere + Surface area of the conical part.

Therefore,

:\implies\sf 77 + \dfrac{275}{2}\\\\\\:\implies\sf  \dfrac{ 154 + 275}{2}\\\\\\:\implies\sf \dfrac{429}{2}\\\\\\:\implies{\underline{\boxed{\frak{\pink{214.5\;cm^2}}}}}\;\bigstar

\therefore{\underline{\sf{Hence, \;TSA\: of \: the \; Toy \; is \; \bf{214.5\;cm^2 }.}}}

Answered by Anonymous
22

Answer:

Explanation:

Given :

  • Radius of cone = 3.5 cm
  • Radius of hemisphere = Radius of cone
  • Total height of toy = 15.5 cm

To Find :

  • The total surface area of the toy.

Solution :

We know,

CSA of hemisphere = 2π

=> CSA = 2 × 3.14 × (3.5)²

=> CSA = 6.28 × 12.25

=> CSA = 77 cm² (Approx)

Now,

Height of cone = Height of toy - Radius of hemisphere

=> h = 15.5 - 3.5

=> h = 12 cm

We need to find slant height of cone,

= +

=> l² = 12² + 3.5²

=> l² = 144 + 12.25

=> l² = 156.25

=> l = 12.5 cm

We know that,

CSA of cone = πrl

=> CSA = 3.14 × 3.5 × 12.5

=> CSA = 3.14 × 43.75

=> CSA = 137.375 cm²

So,

TSA of toy = CSA of hemisphere + CSA of cone

=> TSA = 77 + 137.375

=> TSA = 214.375 cm²

Hence :

The total surface area of toy is 214.375 cm².

Similar questions