Math, asked by jinanjomon8188, 9 hours ago

A trader bought an article for Rs x and sold it for Rs 52, thereby making a profit of x-10 percent on his outlay.calculate the cost price.

Answers

Answered by mathdude500
22

\large\underline{\sf{Solution-}}

Given that,

Cost Price of an Article is Rs x

Selling Price of an Article is Rs 52

Profit % = (x - 10) %

Now, We know,

Relationship between Selling Price, Cost Price and Profit % is connected by

\boxed{\tt{ Selling \: Price =  \frac{(100 + Profit\%) \times Cost \: Price}{100} \: }} \\

So, on substituting the values, we get

\rm \: 52 = \dfrac{(100 + x - 10) \times x}{100}

\rm \: 52 = \dfrac{(90 + x) \times x}{100}

\rm \: x(90 + x) = 5200

\rm \: 90x +  {x}^{2}  = 5200

can be rewritten as

\rm \:  {x}^{2} + 90x - 5200  = 0

On splitting the middle terms, we have

\rm \:  {x}^{2} + 130x - 40x - 5200  = 0

\rm \: x(x + 130) - 40(x + 130) = 0

\rm \: (x + 130)(x - 40) = 0

\rm\implies \:x = 40 \:  \: or \:  \: x \:   =  \:  - 130 \:  \{rejected \}

Hence,

Cost Price of an Article = Rs 40

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by jaswasri2006
6

Given Data :

Cost price of an Article is Rs.x

Selling Price of an Article is Rs.52

Profit % = (x - 10)%

To Find :

Cost Price of that Article.

Solution :

By using,

S.P = [(100 + Profit%) x C.P]/100

--------------------------------------------------------

⇒ 52 = [ (100 + x - 10) × (x) ]/100

⇒ 5200 = 90x + x²

⇒ x² + 90x - 5200 = 0

  • By using splitting middle term method

⇒ x² + 130x - 40x - 5200 = 0

⇒ x(x + 130) - 40(x + 130) = 0

⇒ (x + 130) (x - 40) = 0

x = 40 , -130(reject)

∵ cost price can't be in Negative.

--------------------------------------------------------------

∴ Cost of the Article = Rs.40

Similar questions