Math, asked by vathsava, 1 year ago

A traffic signal board, indicating SCHOOL AHEAD', is an equilateral triangle with
side a'. Find the area of the signal board, using Heron's formula. If its perimeter is
180 cm, what will be the area of the signal board?​

Answers

Answered by DevyaniKhushi
94

Perimeter \:  \:  of \:  \:  equilateral \:  \:  triangle = >  3a = 180 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  > a =  \frac{180}{3}  = 60 \: cm

Now,

Semi \:  \: perimeter  =  >  \frac{180}{2}  = 90 \: cm

Using Heron's Formula,

Area =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \sqrt{90(90 - 60)(90 - 60)(90 - 60)}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:    \sqrt{90 \times 30 \times 30 \times 30}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sqrt{10000 \times 3 \times 3 \times 3 \times 3 \times 3} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 100 \times 3 \times 3 (\sqrt{3})\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 900 \sqrt{3} \:   \: {cm}^{2}

Hence,

{ \boxed{ \red{ \large{Area  \:  \: of  \:  \: triangle \:  \: is \:  \: 900 \sqrt{3} \:  \:  {cm}^{2}  }}}}

Answered by vanunagar13
38

Answer

Given,

Side of the signal board = a

Perimeter of the signal board = 3a = 180 cm

∴ a = 60 cm

Semi perimeter of the signal board (s) = 3a/2

By using Heron’s formula,

Area of the triangular signal board will be =(in the above attached image)

\huge \red \mid {\fbox {@vanunagar13♥}}\mid

Similar questions