A traffic signal board indication and equilateral angle with side and in 'a' find the area using 'heron' formula if its perimeter 180 cm. find the area.
Answers
Answered by
0
perimeter = 180cm
3 × side = 180
side (a) = 180 ÷ 3 = 60cm
semi perimeter s = perimeter ÷2
180 ÷ 2 = 90cm
area of equilateral triangle by heron's formula
= √[s( s - a) (s - a) ( s - a)]
= √[ 90 (90 - 60) (90 - 60) (90 -60)]
= √90× 30 × 30 × 30
= 1558.84cm^2
Answer: required area = 1558.84cm^2
3 × side = 180
side (a) = 180 ÷ 3 = 60cm
semi perimeter s = perimeter ÷2
180 ÷ 2 = 90cm
area of equilateral triangle by heron's formula
= √[s( s - a) (s - a) ( s - a)]
= √[ 90 (90 - 60) (90 - 60) (90 -60)]
= √90× 30 × 30 × 30
= 1558.84cm^2
Answer: required area = 1558.84cm^2
Answered by
1
side = a
perimeter= 3a
S= 3a/2
area= √{(3a/2)[(3a-a)/2][(3a-a)/2][(3a-a)/2]}
= √{3a×a×a×a/2×2×2×2}
= (a×a×√3)/2×2
= (a²√3)/4
if perimeter= 180,
side= 60
area= (60×60×√3)/4
= 900√3cm²
perimeter= 3a
S= 3a/2
area= √{(3a/2)[(3a-a)/2][(3a-a)/2][(3a-a)/2]}
= √{3a×a×a×a/2×2×2×2}
= (a×a×√3)/2×2
= (a²√3)/4
if perimeter= 180,
side= 60
area= (60×60×√3)/4
= 900√3cm²
Similar questions