Math, asked by vinitjain93771, 9 months ago

A train covers a distance of 90 km at a uniform speed .Had the speed bee 15 km hour more, it would have taken 30 minutes less for the journey. Find the original speed of the train

Answers

Answered by ShírIey
58

AnswEr:

Let us Consider that the speed of the train be x km/hr.

Increased Speed = 15 km/hr.

Distance Covered = 90 km.

\bigstar\large{\underline{\boxed{\sf{\pink{Time\:=\:\dfrac{Distance}{Speed}}}}}}

:\implies\sf\: \dfrac{90}{x} -------Eq(1)

When Speed Increased

:\implies\sf\: \dfrac{90}{x\:+\: 15} -------Eq(2)

\star\bold{\underline{\sf{According\: to\; Question\;Now,}}}

:\implies\sf\: \dfrac{90}{x} \:-\: \dfrac{90}{x\:+\;15} = \dfrac{1}{2}

:\implies\sf\: 90 = \dfrac{x\:+\;15\:-\;5}{x(x\:+\;15)} = \dfrac{1}{2}

:\implies\sf\: \dfrac{90 \times\;15}{x^2\:+\:15x} \:=\; \dfrac{1}{2}

:\implies\sf\: x^2 + 15x = 2700

Now, Solving this Equation

:\implies\sf\: x^2 + 15x = 2700=0

:\implies\sf\: x^2 + 16x - 14x - 2700 = 0

:\implies\sf\: x(x\:+\;16) -45(x\:+\: 60)=0

:\implies\sf\: (x\:+\:16) \:-\:(x\:-\:45) =0

:\implies\sf\: x + 16 = 0

:\implies\large{\underline{\boxed{\sf{\red{x\:=\: -16}}}}}

:\implies\sf\: x - 45 = 0

:\implies\large{\underline{\boxed{\sf{\red{x\:=\: 45}}}}}

Speed Can't be Negative.

Therefore, Speed of the Train is 45 km/hr.

Answered by varundhawan2563
1

AnswEr:

Let us Consider that the speed of the train be x km/hr.

Increased Speed = 15 km/hr.

Distance Covered = 90 km.

time = distance / speed

:⟹ 90/x ------- equation 1

When Speed Increased

:⟹ 90/x+15 -------Eq(2)

AccordingtoQuestionNow,

:⟹ 90/x - 90/x+15 = 1/2

:⟹ 90 = x+15-5 / x(x+15) = 1/2

:⟹ 90*15 / x square + 15x = 1/2

:⟹ x square + 15x = 2700

Now, Solving this Equation

:⟹ x square + 15x = 2700 =0

:⟹ x square + 16x - 14x -2700 = 0

:⟹ x(x+15) - 45 (x+60) = 0

:⟹ (x +15) - (x-45) = 0

:⟹ x = (-16)

:⟹ x - 45 = 0

:⟹ x = 45

speed cannot be negative...

so the speed is 45 km/h...

Similar questions