Math, asked by Aslihan, 3 months ago

A train crosses a platform 90 long in 30 seconds and a man standing on the platform in 15 seconds. Find the speed of the train​

Answers

Answered by parkjimin199525
24

 \sf {let \: the \: speed \: of \: train  \: be \: x}

 \sf \dfrac{length \: of \: the \: speed}{speed \: of \: the \: train}  = time \: taken \: by \: train \: to \: pa - ss  \: the \: man

  \implies \sf \dfrac{y }{x}  = 15

 \implies \sf {y} = 15x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)

 \sf \dfrac{length \: of \: train \:  + length \: of \: platform}{speed \: of \: train \: }  =  \: time \: taken \: by \: the \: train \: to \: cross \: the \: platform \:

  \implies\sf \dfrac{y + 90}{x}  = 30

  \implies\sf{y + 90 = 30x} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

 \sf{put \: the \: value \: of \: y \: from(1) \: in \: (2)}

 \implies \sf15x + 90 = 30x

 \implies \sf{15x = 90}

 \implies \sf{ x \:  = 6m   \ / \sec}

 \sf {speed \: of \: train = (6  \times \dfrac{18}{5}})km/hr =  \: 21.6km \: / \: hr

Similar questions