Math, asked by anjani143, 1 year ago

a train crosses a platform in 60 Seconds at a speed of 40 kilometres per hour how much time will take it to cross an electrical pole if the length of a platform is hundred metres​

Answers

Answered by Avengers00
10
\underline{\underline{\Huge{\textbf{Solution:}}}}

Given,

Time taken by train to cross the platform, t = 60 seconds

Speed of the train, S = 40 kmph

Length of the Platform = 100 m

time taken by the train to cross an electrical pole = ?

\\


\underline{\LARGE{\textsf{Step-1:}}}

\sf\textsf{Express the Speed of the train in mps}

\quad\LARGE{\quad \boxed{\bigstar\; \mathbf{1\: kmph\: =\: \dfrac{5}{18}\: mps\quad}}}

\sf\textsf{Multiply with 40 in both sides}

\implies \mathsf{40\: kmph = \dfrac{5}{18}\times40\: mps}

\implies \mathsf{40\: kmph = \dfrac{200}{18}\: mps}

\implies \mathsf{40\: kmph = \dfrac{100}{9}\: mps}

\therefore \textsf{Speed of the train = $\dfrac{100}{9}$ mps}

\\


\underline{\LARGE{\textsf{Step-2:}}}

\sf\textsf{Consider a variable for length of the train}

\sf\textsf{Length of the train is not mentioned}\\\sf\textsf{in the given data.}

\sf\textsf{Let the length of the train be \textbf{x meters}}

\\


\underline{\LARGE{\textsf{Step-3:}}}

\sf\textsf{Note the distance covered by the train}\\\sf\textsf{in crossing a platform}

\sf\textsf{Distance covered by the train in crossing}\\\sf\textsf{the platform is equal to sum of Lengths of}\\\sf \textsf{train and the platform}

\implies \sf\textsf{Distance covered = x+100}

\\


\underline{\LARGE{\textsf{Step-4:}}}

\sf\textsf{Find the length of the train}

\sf\textsf{Given, time taken by the train to cover}\\\sf\textsf{(x+100) m, with a speed of 40 kmph = 60 s}

\quad\LARGE{\quad \boxed{\bigstar\; \mathbf{Speed\: =\: \dfrac{Distance\: Covered}{time\: taken}\quad}}}

\sf\textsf{Substituting Values}

\implies \mathsf{\dfrac{100}{9} = \dfrac{x+100}{60}}

\sf\textsf{Cross Multiply}

\implies \mathsf{9(x+100) = 100(60)}

\implies \mathsf{9x+900 = 6000}

\implies \mathsf{9x =6000 - 900}

\implies \mathsf{9x=5100}

\implies \mathsf{x=\dfrac{5100}{9}}

\implies \mathsf{x=\dfrac{1700}{3}}

\therefore \mathsf{x= 566.6}

\\


\underline{\LARGE{\textsf{Step-5:}}}

\sf\textsf{Find the time taken by train to cross the electrical pole}

\quad \textbf{time taken = $\dfrac{Distance\: covered}{Speed}$}

\sf\textsf{Assuming that the width of the pole is negligible,}\\\sf\textsf{the time taken by the train in crossing the electrical}\\\sf\textsf{pole is equal to time taken by the train in crossing}\\\sf\textsf{it's own length}

\sf\textsf{Substituting Values}

\implies \sf\textsf{time taken= $\dfrac{\frac{1700}{3}}{\frac{100}{9}}$}

\implies \sf\textsf{time taken= $\dfrac{17\cancel{00}}{3}\times\dfrac{9}{\cancel{100}}$}

\implies \sf\textsf{time taken= 17$\times$3}

\therefore \sf\textsf{time taken = 51 s}

\\

\blacksquare\; \; \sf\textsf{time taken by the train to cross}\\\sf\textsf{an electrical pole = \LARGE{\underline{\Large{\textbf{51 Seconds}}}}}
Similar questions
Math, 7 months ago