Math, asked by nikhilroyn2814, 2 months ago

A train moves from rest to a speed of 25 m/s in 30 seconds. What is the magnitude of its acceleration?

Answers

Answered by MystícPhoeníx
120

Given:-

  • Initial velocity ,u = 0m/s
  • Final velocity ,v = 25m/s
  • Time taken ,t = 30

To Find:-

  • Magnitude of Acceleration ,a

Solution:-

we have to calculate the magnitude of acceleration.

As we know that acceleration is defined as the rate of change in velocity .

  • a = v-u/t

where

  • v is the final velocity
  • a is the acceleration
  • u is the initial velocity
  • t is the time taken

Substitute the value we get

:\implies a = 25-0/30

:\implies a = 25/30

:\implies a = 0.833 m/

  • Hence, the acceleration of the train is 0.833 m/.
Answered by BrainlyRish
52

Given that , A train moves from rest to a speed of 25 m/s in 30 seconds .

Exigency To Find : The magnitude of Acceleration of train .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Given that ,

  • The initial velocity ( u ) of train is 0 m/s [ as , train starts from rest ] .
  • The final velocity ( v ) of train is 25 m/s .
  • Total Time taken ( t ) is 30 seconds .

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Finding Magnitude of Acceleration of Train :

\dag\:\:\pmb{ As,\:We\:know\:that\::}\\\\ \qquad \bigstar \:\: \bf Acceleration \: : \: \sf The \: rate \:of \: of \: change \:of\: velocity\:is \:known \: as \: Acceleration \:. \:\\\\ \qquad\maltese\:\:\bf Formula \:for \: Acceleration\:: \\\\

\qquad \dag\:\:\bigg\lgroup \pmb{\frak{ Acceleration \:(\: a\:)\:: \dfrac { v - u}{t} }}\bigg\rgroup \\\\

⠀⠀⠀Here , v is the final velocity , u is the Initial velocity , is the total time taken and is the Acceleration.

\qquad \dashrightarrow \sf \: Acceleration\: (\:a\:)\: =\: \dfrac{\:\:v\:\: - \:\:u\:\:}{t}\:\: \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf \: Acceleration\: (\:a\:)\: =\: \dfrac{\:\:v\:\: - \:\:u\:\:}{t}\:\: \\\\

\qquad \dashrightarrow \sf \: Acceleration\: (\:a\:)\: =\: \dfrac{\:\:25\:\: - \:\:0\:\:}{30}\:\: \\\\

\qquad \dashrightarrow \sf \: Acceleration\: (\:a\:)\: =\: \dfrac{\:\:25\:\:\:}{30}\:\: \\\\

\qquad \dashrightarrow \sf \: Acceleration\: (\:a\:)\: =\: \cancel {\dfrac{\:\:25\:\:\:}{30}}\:\: \\\\

\qquad \dashrightarrow \sf \: Acceleration\: (\:a\:)\: =\: 0.833 \:\:\:\: \\\\

\qquad \therefore \:\:\pmb{\underline{\purple{\frak{ \:Acceleration\: (\:a\:)\: = \:0.833 \:m\:/s^2 \: }}} }\bigstar \\

  • Here, a denotes Magnitude of Acceleration which is 0.833 m/s²

\qquad \therefore \:\underline { \sf Hence , \:\: The \: \:Magnitude \:\: of \:\: the \:\:Acceleration \:\: is \:\:\bf \:0.833 \:m/s^2 \:\:.}\\

Similar questions