Physics, asked by spineanshdubenorth, 2 months ago

A train starting from rest, picks up a velocity of 20 m/s in 200 s. It continues to move at he same rate for the next 500 s, and is then brought to rest in another 100 s.
(i) plot a velocity-time graph. (ii) from the graph, calculate : (a) the uniform rate of
acceleration, (b) the uniform rate of retardation, (c) the total distance covered before stopping, (d)the average velocity over the total journey.

Answers

Answered by IlMYSTERIOUSIl
22

A train starting from rest, picks up a velocity of 20 m/s in 200 s. It continues to move at he same rate for the next 500 s, and is then brought to rest in another 100 s.

(i) plot a velocity-time graph.

Graph is in the attachment

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀

(ii) from the graph, calculate :

(a) the uniform rate of acceleration

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto \dfrac{Final  \: velocity -  Initial \:  velocity }{Time \:  interval}  \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto \dfrac{f-  i }{t}  \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto \dfrac{20 - 0}{200}  \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto \dfrac{20 }{200}  \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto \dfrac{2 }{20}  \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto \dfrac{ \cancel{2 }}{ \cancel{20}}   =  \dfrac{1}{10}m {s}^{ - 2}  \end{gathered} \end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto  \blue{0.1 }\end{gathered} \end{gathered} \end{gathered}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀

(b) the uniform rate of retardation

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto \dfrac{  Initial \:  velocity - Final  \: velocity - }{Time \:  interval}  \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto \dfrac{i  - f}{t}  \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto \dfrac{0 - 20}{100}  \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto  \dfrac{ \cancel{ - 20}}{ \cancel{100}} =  \dfrac{ - 1 }{5}  \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto  \purple{ - 0.2 {ms}^{ - 2} }\end{gathered} \end{gathered} \end{gathered}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀

(c) the total distance covered before stopping.

as you can see in the attachment that we have divided it into three parts .

Distance covered - I part + II part + III part

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto  \left(\dfrac{1}{2}  \times 200 \times 20  \right)+ \left( 500 \times 20  \right)+   \left(\frac{1}{2}  \times 100 \times 20  \right)\end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto  \left( 2000  \right)+ \left( 10000  \right)+   \left( 1000  \right)\end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto  \pink{ 13000 {m} }\end{gathered} \end{gathered} \end{gathered}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀

(d)the average velocity over the total journey.

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto \dfrac{Total  \: distance  }{ Total  \: time}  \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto \dfrac{13000  }{ 800}  \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto \dfrac{130 \cancel{00}  }{ 8 \cancel{00}}   \end{gathered}\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered} \begin{gathered}\\ \sf \mapsto  \red{  16.25m}\end{gathered} \end{gathered} \end{gathered}

Attachments:
Answered by QueenSaanvi
0

above ans is correct .

hi friend nice to meet you

Similar questions