Math, asked by rinar45400, 4 months ago

A train travel 360 km at a uniform speed. if the speed had been 5km/h more , it would have taken 1hours less for the same journo. find the speed of the train.​

Answers

Answered by mathdude500
5

\begin{gathered}\Large{\bold{\purple{\underline{CaLcUlAtIoN\::}}}} \\ \end{gathered}

Case :- 1

☆ Let speed of the train be x km/ hour.

☆ Distance travel = 360 km

☆ So, time taken to travel 360 km with speed of 'x' km/hr is given by

\tt \:  \longrightarrow  \boxed{ \tt \purple{\: t_1 \:   =  \: \dfrac{360}{x}  \: hours}}

Case :- 2

☆ Let speed of the train be (x + 5) km/ hour.

☆ Distance travel = 360 km

☆ So, time taken to travel 360 km with speed of 'x + 5' km/hr is given by

\tt \:  \longrightarrow \boxed{ \purple{  \tt\: t_2 \:  =  \: \dfrac{360}{x + 5}  \: hours}}

\begin{gathered}\bf\red{According \: to \: statement}\end{gathered}

\tt \:  \longrightarrow \: t_1 \:  -  \: t_2 \:  = 1

\tt \:  \longrightarrow \: \dfrac{360}{x}  - \dfrac{360}{x + 5}  = 1

\tt \:  \longrightarrow \: \dfrac{360x + 1800 - 360x}{x(x + 5)}  = 1

\tt \:  \longrightarrow \:  {x}^{2}  + 5x = 1800

\tt \:  \longrightarrow \:  {x}^{2}  + 5x - 1800 = 0

\tt \:  \longrightarrow \:  {x}^{2}  + 45x - 40x - 1800 = 0

\tt \:  \longrightarrow \: x(x + 45) - 40(x + 45) = 0

\tt \:  \longrightarrow \: (x + 45)(x - 40) = 0

\tt \:  \longrightarrow \: x = 40 \: or \: x \:  =  - 45 \: (rejected)

\tt\implies \:speed \: of \: train \:  =  \: 40 \: km \: per \: hour

Similar questions