Math, asked by Divye8141, 1 year ago

A tree 12m high, is broken by the wind in such a way that its top touches the ground and makes an angle of 60degree with the ground .. At what height from the bottom, the is broken by the wind???

Answers

Answered by Riyakushwaha12345
350
I hope it will help you

I think it Anwer should be 5.6 m

Pls mark as a brainlist


See the solution in picture

Attachments:
Answered by AnkitaSahni
8

Given :

Height of the tree = 12 m

Angle made by the tree with the ground = 60°

To Find :

At what height from the bottom, the tree is broken by the wind

Solution :

When the wind breaks the tree, a right-angled triangle is formed.

Let 'P' be the perpendicular and 'H' be the Hypotenuse of right-angled triangle having angle 60°.

As per question,

     P + H = 12 m   -------- (i)

We know,

     sin∅    = \frac{Perpendicular}{Hypotenuse}

⇒  sin60  = \frac{P}{H}

⇒   \frac{\sqrt{3} }{2}       =  \frac{P}{H}

  H        = ( \frac{2}{\sqrt{3} } ) × P

Putting the value of H in equation (i)

⇒  ( \frac{2}{\sqrt{3} } ) × P  + P  = 12

⇒   P(\frac{2}{\sqrt{3} } + 1)         = 12

⇒   P(\frac{2 + \sqrt{3} }{\sqrt{3} })          = 12

⇒      P                = \frac{12\sqrt{3} }{2 + \sqrt{3} }

⇒      P                = \frac{12\sqrt{3} (2 - \sqrt{3}) }{(2 + \sqrt{3})(2 - \sqrt{3} ) }

⇒      P                = \frac{24\sqrt{3} - 36}{4 - 3}

⇒      P                = 24×1.732 - 36

⇒      P                =  41.568 - 36

∴       P                = 5.568 m

Therefore, the height from where the tree broken is 5.568 m.

Attachments:
Similar questions