Math, asked by rambikavathy5, 19 days ago

a tree is broken at a height of 5cm from the ground and its top touches the ground at distance of 12m from the base of the tree.find the orginal height of the tree​

Answers

Answered by Anonymous
73

Given :

  • Height at which tree is broken = 5 m
  • Top touches the ground at = 12 m

 \\ \rule{200pt}{3pt}

To Find :

  • Original height of tree = ?

 \\ \rule{200pt}{3pt}

Solution :

~ Formula Used :

  • Pythagoras Theorem :

 \large{\color{cyan}{\bigstar}} \; {\underline{\boxed{\orange{\sf{ Hypotenuse² = Height² + Base² }}}}} \; {\color{cyan}{\bigstar}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Height fell on the ground :

 {\dashrightarrow{\qquad{\sf{ Hypotenuse = Height² + Base² }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ PR² = PQ² + RQ² }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ PR² = (5)² + (12)² }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ PR² = 25 + 144 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ PR² = 169 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ PR = \sqrt{169} }}}} \\ \\ \ {\qquad \; \; \; {\therefore \; {\underline{\boxed{\red{\sf{ Tree \; Fell = 13 \; m }}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Original Height :

 {\longmapsto{\qquad{\sf{ Original \; Height = Tree{\small_{(Fell)}} + Height{\small_{(Broken)}} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Original \; Height = 13 \; m + 5 \; m }}}} \\ \\ \ {\qquad \; \; \; {\therefore \; {\underline{\boxed{\color{darkblue}{\sf{ Original \; Height = 18 \; m }}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Therefore :

❛❛ Original Height of the tree is 18 m . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Attachments:
Answered by EmperorSoul
121

Given :

Height at which tree is broken = 5 m

Top touches the ground at = 12 m

 \\ \rule{200pt}{3pt}

To Find :

Original height of tree = ?

 \\ \rule{200pt}{3pt}

Solution :

Formula Used :

Pythagoras Theorem :

 \large{\color{red}{\bigstar}} \; {\underline{\boxed{\red{\sf{ Hypotenuse² = Height² + Base² }}}}} \; {\color{red}{\bigstar}}

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the Height fell on the ground :

 {\dashrightarrow{\qquad{\sf{ Hypotenuse = Height² + Base² }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ PR² = PQ² + RQ² }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ PR² = (5)² + (12)² }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ PR² = 25 + 144 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ PR² = 169 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ PR = \sqrt{169} }}}} \\ \\ \ {\qquad \; \; \; {\therefore \; {\underline{\boxed{\red{\sf{ Tree \; Fell = 13 \; m }}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the Original Height :

 {\longmapsto{\qquad{\sf{ Original \; Height = Tree{\small_{(Fell)}} + Height{\small_{(Broken)}} }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Original \; Height = 13 \; m + 5 \; m }}}} \\ \\ \ {\qquad \; \; \; {\therefore \; {\underline{\boxed{\color{darkblue}{\sf{ Original \; Height = 18 \; m }}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Therefore :

❛❛ Original Height of the tree is 18 m . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions