Math, asked by sarwarforever, 1 day ago

y⁴+1/y⁴=A

•if A=m⁴+4m²+2 then prove that y²-1=my.​

Answers

Answered by user0888
8

\Large\text{\underline{\underline{Based conditions}}}

I'm regarding the variables restricted to positive numbers in this answer.

Interval of the variables: -

\text{$\cdots\longrightarrow\boxed{m>0,\ y>1.}$}

\Large\text{\underline{\underline{Explanation}}}

We have a system equation, which is -

\text{$\cdots\longrightarrow\begin{cases} & y^{4}+\dfrac{1}{y^{4}}=A. \\  & A=m^{4}+4m^{2}+2. \end{cases}$}

If we add 2 on the second equation, -

\text{$\cdots\longrightarrow A+2=(m^{2}+2)^{2}.$}

On the first equation, if we add 2 on both sides, -

\text{$\cdots\longrightarrow(y^{2}+\dfrac{1}{y^{2}})^{2}=A+2.$}

By substitution on the RHS, -

\text{$\cdots\longrightarrow(y^{2}+\dfrac{1}{y^{2}})^{2}=(m^{2}+2)^{2}.$}

Now, -

\text{$\cdots\longrightarrow y^{2}+\dfrac{1}{y^{2}}=m^{2}+2.$}

Let us subtract 2 on both sides, -

\text{$\cdots\longrightarrow (y-\dfrac{1}{y})^{2}=m^{2}.$}

Hence, -

\text{$\cdots\longrightarrow y-\dfrac{1}{y}=m.$}

Further simplifying gives -

\text{$\cdots\longrightarrow \boxed{y^{2}-1=my.}$}

Similar questions