Math, asked by AsifAhamed4, 1 year ago

⭐A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segment BD and DC into which BC is divided by the point of contact D are if lengths 8 cm and 6cm respectively. Find the sides AB and AC. ⭐

BEST ANSWER WILL BE MARKED AS BRAINLIEST!

Answers

Answered by siddhartharao77
10

Step-by-step explanation:

Let O be the centre of Δ such that,

CF = CD = 6 cm.

BE = BD = 8 cm.

∴ AE = AF = x.

Now, AB = AE + BE

               = x + 8.


BC = BD + CD

     = 8 + 6

     = 14 cm.


CA = AF + CF

     = x + 6.


We know that Semi perimeter s = a + b + c/2 (or) 2s = a + b + c.

⇒ 2s = AB + BC + CA

⇒ 2s = x + 8 + 14 + 6 + x

⇒ 2s = 2(14 + x)

⇒ s = 14 + x.

Now,

Area of ΔAB = √s(s - a)(s - b)(s - c)

⇒ √(14+x){(14+x)-14}{(14+x)-(6+x)}{(14+x)-(8+x)}

⇒ √(14+x)(x)(8)(6)

⇒ √48(14x+x²)

⇒ 4√3(14x+x²)

(i) Area of ΔOBC:

= 1/2 * OD * BC

= 1/2 * 4 * 14

= 28.


(ii) Area of ΔOCA:

= 1/2 * OF * AC

= 1/2 * 4 * (6 + x)

= 12 + 2x.


(iii) Area of ΔOAB:

= 1/2 * OE * AB

= 1/2 * 4 * (8 + x)

= 16 + 2x.


∴ Area of ΔABC = Area of ΔOBC + Area of ΔOCA + Area of ΔOAB:

⇒ 4√3(14x+x²) = 28 + 12 + 2x + 16 + 2x

⇒ 4√3(14x+x²) = 56 + 4x

⇒ √3(14x+x²) = 14+x

On squaring both sides, we get

⇒ 3(14x+x²) = (14+x)²

⇒ 42x + 3x² = 196 + x² + 28x

⇒ 2x² + 14x - 196 = 0

⇒ x² + 7x - 98 = 0

⇒ x² + 14x - 7x - 98 = 0

⇒ x(x + 14) - 7(x + 14) = 0

⇒ (x-7)(x+14) = 0

⇒ x = 7, -14{Neglect -ve values}

⇒ x = 7

(iv)

AB = x + 8

     = 7 + 8

     = 15 cm.


(v)

AC = 6 + x

     = 6 + 7

     = 13 cm.


Therefore, AB= 15 cm and AC = 13 cm.


Hope this helps!

Attachments:
Answered by Anonymous
1
Hey


it helps you.....
Attachments:
Similar questions