Math, asked by neha89, 1 year ago

A triangle ABC is formed by the points A(2,3),B (-2,-3),C (4,-3). what points of intersection of sides BC and bisector of angle A?

Answers

Answered by abhi178
24
first find equation of line form by all points
now equation of line AB :-
(y-3)=(3+3)/(2+2)(x-3)
4 (y-3)=6 (x-2)
2y-6=3x-6
3x-2y=0
in the same way equation of lineBC:-
y+3=0
and equation of line AC:-
3x+y-9=0
now bisector of angle A,
(3x-2y)/root {13)=+_(3x+y-9)/root10

(3x-2y)/root13=(3x+y-9)/root10
root10 (3x-2y)=root13 (3x+y-13)--------(1)
now intersection of equation (1) and line BC
y=-3 and put this equation (1)
x=(6root10 +16root13)/3 (root13-root10)

in the same way ,
(3x-2y)/root13=-(3x+y-9)/root10
solve and another point

abhi178: is this correct please check answer
abhi178: please reply friend
neha89: hmm hope so but thanks
abhi178: are you understand
neha89: yep some what i understood
abhi178: where have you phase problem
neha89: from my sir
Answered by Anonymous
36

Solution :-

Let the point of intersection on BC be D

AB is the angle bisector of ∠A

By using angle bisector theorem :-

⇒ BD/DC = AB/AC ---eq(1)

Now find the lengths of AB and AC using distance formula

d =  \sqrt{(x_2 -x_1)^{2}   + (y_2 - y_1)^{2}  }

A(2,3) B(-2,-3)

 \implies AB =  \sqrt{( - 2 -2)^{2}   + ( - 3 -  3)^{2}  }

 \implies AB =  \sqrt{4^{2}   + 6^{2}  }  =  \sqrt{16 + 36}  =  \sqrt{52}

 \implies AB  =  \sqrt{4 \times 13}    = 2 \sqrt{13}

A(2,3) C(4, - 3)

 \implies AC =  \sqrt{(4 -2)^{2}   + ( - 3 -  3)^{2}  }   =

 \implies AC =  \sqrt{2^{2}   + 6^{2}  }   =  \sqrt{4 + 36}

 \implies AC   =  \sqrt{40}  =  \sqrt{4 \times 10}  = 2 \sqrt{10}

Substituting AB = 2√13 and BC = 2√10 in eq(1)

⇒ BD/DC = AB/AC

⇒ BD/DC = 2√13/2√10

⇒ BD/DC = √13/√10

⇒ BD : DC = √13 : √10

So, the line segment BC is divided in the ratio of √13 : √10

Now, by using section formula

D(x,y) =  \bigg( \dfrac{mx_2 + nx_1}{m + n} ,\dfrac{my_2 + ny_1}{m + n} \bigg)

B(-2,-3) C(4,-3) m : n = √13 : √10

 \implies D(x,y) =  \bigg( \dfrac{ \sqrt{13}(4)+  \sqrt{10}( - 2) }{ \sqrt{13} +  \sqrt{10}  } ,\dfrac{ \sqrt{13}( - 3) +  \sqrt{10}( - 3) }{ \sqrt{13} +  \sqrt{10}  } \bigg)

 \implies D(x,y) =  \bigg( \dfrac{ 4\sqrt{13} - 2 \sqrt{10} }{ \sqrt{13} +  \sqrt{10}  } ,\dfrac{ - 3 \sqrt{13}  - 3\sqrt{10} }{ \sqrt{13} +  \sqrt{10}  } \bigg)

Substituting √13 = 3.606, √10 = 3.162

 \implies D(x,y) =  \bigg( \dfrac{ 4(3.606)- 2 (3.162)}{ 3.606+  3.162 } ,\dfrac{ - 3(3.606)  - 3(3.162)}{ 3.606 +  3.162 } \bigg)

 \implies D(x,y) =  \bigg( \dfrac{14.424- 6.324}{ 3.606+  3.162 } ,\dfrac{ - 10.818  - 9.486}{ 3.606 +  3.162 } \bigg)

 \implies D(x,y) =  \bigg( \dfrac{8.1}{6.768} ,\dfrac{ -20.304}{6.768 } \bigg)

 \implies D(x,y) =  (1.12 , - 3)

Therefore the coordinates of point of intersection are (1.12, - 3)

Similar questions