Math, asked by MichWorldCutiestGirl, 7 hours ago

A triangle and a parallelogram have the same base and same area. If the sides of the triangle are 15 cm, 14 cm and 13 cm and the parallelogram stands on the base 15 cm, find the height of the parallelogram.With Diagram

Answer with proper explanation.

Don't spam.


→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​

Answers

Answered by ItzzTwinklingStar
31

Given:

  • Sides of traingle are 15 cm, 14 cm and 13 cm.
  • Base of parallelogram and triangle = 15 cm
  • Area of triangle = Area of Parallelogram

To find:

  • Height of parallelogram = ?

Solution:

Let ,

length of the sides of triangle be,

  • a = 15 cm
  • b = 14 cm
  • c = 13 cm

Let,

  • semi - perimeter of triangle be "s".

Therefore,

{\underline{\boxed{ \bold{ \red{ s = \dfrac{a + b + c}{2}}}}}} \:  \:  \bigstar\\ \\

:\implies\sf s = \dfrac{15 + 14 + 13}{2}\\ \\

:\implies\sf s = \cancel{ \dfrac{42}{2}}\\ \\

:\implies\bf \pink{s = 21\;cm}\\ \\

Now, Using Heron's Formula,

{ \underline{\boxed{\bf{\purple{Area = \sqrt{s(s - a)(s - b)(s - c)}}}}}}\\ \\

:\implies\sf \sqrt{21(21 - 15)(21 - 14)(21 - 13)}\\ \\

:\implies\sf \sqrt{21 \times 6 \times 7 \times 8}\\ \\

:\implies\sf \sqrt{7056}\\ \\

:\implies{\boxed{\frak{\pink{84 \:cm^2}}}}\;\\ \\

Let, height of parallelogram be "h" cm.

Now, We know that,

{\underline{\boxed{\sf{\purple{Area_{\;(parallelogram)} = Base \times Height}}}}}\\ \\

:\implies\sf  15\times h=84\\ \\

:\implies\sf  h =\cancel{\frac{84}{15}}\\ \\

:\implies{\boxed{\frak{\pink{h=5.6 \:cm}}}}\;\\ \\

∴ Thus , Height of Parallelogram is 5.6cm

Attachments:
Answered by juwairiyahimran18
6

\huge\red\dag\mathbb{AnSwEr}\red\dag

Given:

Sides of traingle are 15 cm, 14 cm and 13 cm.

Base of parallelogram and triangle = 15 cm

Area of triangle = Area of Parallelogram

To find :

Height of parallelogram = ?

Solution:

Let , length of the sides of triangle be,

a = 15 cm

b = 14 cm

c = 13 cm

Let , semi - perimeter of triangle be "s".

Therefore,

\begin{gathered}{\underline{\boxed{ \bold{ \red{ s = \dfrac{a + b + c}{2}}}}}} \: \: \bigstar\\ \\ \end{gathered} </p><p>\begin{gathered}:\implies\sf s = \dfrac{15 + 14 + 13}{2}\\ \\\end{gathered}

\begin{gathered}:\implies\sf s = \cancel{ \dfrac{42}{2}}\\ \\\end{gathered}

\begin{gathered}:\implies\bf \pink{s = 21\;cm}\\ \\\end{gathered}

Now, Using Heron's Formula,

\begin{gathered}{ \underline{\boxed{\bf{\purple{Area = \sqrt{s(s - a)(s - b)(s - c)}}}}}}\\ \\\end{gathered} </p><p>\begin{gathered}:\implies\sf \sqrt{21(21 - 15)(21 - 14)(21 - 13)}\\ \\\end{gathered} \begin{gathered}:\implies\sf \sqrt{21 \times 6 \times 7 \times 8}\\ \\\end{gathered}\begin{gathered}:\implies\sf \sqrt{7056}\\ \\\end{gathered}

\begin{gathered}:\implies{\boxed{\frak{\pink{84 \:cm^2}}}}\;\\ \\\end{gathered}

Let, height of parallelogram be "h" cm.

Now, We know that,

\begin{gathered}{\underline{\boxed{\sf{\purple{Area_{\;(parallelogram)} = Base \times Height}}}}}\\ \\\end{gathered}

\begin{gathered}:\implies\sf 15\times h=84\\ \\\end{gathered} \begin{gathered}:\implies\sf h =\cancel{\frac{84}{15}}\\ \\\end{gathered} \begin{gathered}:\implies{\boxed{\frak{\pink{h=5.6 \:cm}}}}\;\\ \\\end{gathered}

∴ Thus , Height of Parallelogram is 5.6cm

Similar questions