Math, asked by paragtiwari, 3 months ago

A triangle and parallelogram have the same base and the same area if the side of the triangle are 34 CM 42 cm and 20 cm find the height of the parallelogram having 42 cm is equals to.​

Answers

Answered by snehash2008
1

Step-by-step explanation:

a=34

b=42

c=20

a+b+c

2

= 34 +42+20

2

= 96

2

= 48 answer

height find :_ 1

× base × height

2

= 1

× 42 × height

2

height = 21 answer

Answered by riya15042006
7

\boxed{\tt{\bold{\red{\large{ANSWER}}}}}:-

Given ,

Sides of Triangle are 34cm , 42cm , 20cm

Base of Parallelogram is 42cm

It is also given that ,

\boxed{\purple{ \: Area  \: of Parallelogram  \: = Area  \: of \:  Triangle }} -  -  > 1

\boxed{\pink{Area \:  of \:  Parallelogram }}= Base × Height \:

\rightarrow{42 \times h}

\rightarrow{42h}

\boxed{\blue{Area  \: of \:  Triangle \: }} = \sqrt{s(s - a)(s - b)(s - c)}

Here , s is the semi - perimeter ..

a , b , c are the sides of Triangle

Here ,

a = 34cm

b = 42cm

c = 20cm

So ,

\boxed{\green{s =  \frac{a + b + c}{2} }}

s =  \frac{34 + 42 + 20}{2}

s =  \frac{76  + 20}{2}

s =  \frac{96}{2}

s = 48cm

Now ,

Area  \: of  \: Triangle =  \sqrt{48(48 - 34)(48 - 42)(48 - 20)}

\rightarrow{ \sqrt{48(14)(6)(28)}}

\rightarrow{ \sqrt{112896} }

\rightarrow{336 {cm}^{2} }

Now we will put the value of area of parallelogram and area of triangle in equation 1.

\boxed{\purple{ \: Area  \: of Parallelogram  \: = Area  \: of \:  Triangle }}

\rightarrow{42 \times h = 336}

\rightarrow{h =  \frac{336}{42} }

\rightarrow{h = 8 \: cm}

\bold{\large{\orange{Height \:  of \:  Parallelogram \:  is \:  8 cm }}}

\bold{\large{\red{ I  \: hope  \: it \:  helps  \: u  \: dear \:  friend !! \: }}}

Attachments:

Anonymous: Gr8 :)
riya15042006: ^_^
riya15042006: thanjs to ur help !!! i can make my answer more presentative ^_^♡♡
riya15042006: thanks*
Anonymous: :)
paragtiwari: thanks
riya15042006: ur welcome ^_^
Similar questions