Math, asked by Harparkash, 10 months ago

A triangle has an area of 90 cm. find the length of the base if the base is 3 cm more than height​

Answers

Answered by rakhibansode1582
15

Answer:

let \: the \: height \: of \: the \: triangle \: be \: x \: and \: base \: be \:( x + 3) \\ according \: to \: given \: condition \\ area \: of \: triangle =  \frac{1}{2}  \times b \times h \\ 90 =  \frac{1}{2}  \times (x + 3) \times x \\ 90 =  \frac{1}{2}  \times  {x}^{2}  + 3x \\ 180 =  {x}^{2}  + 3x \\  {x}^{2}  + 3x - 180 = 0 \\ x(x + 15) - 12( x + 15) = 0 \\ (x + 15)(x - 12) = 0 \\ so. \:( x + 15) = 0 \: or \: x - 12 = 0 \\ therefore</strong><strong>,</strong><strong> \: x =  - 15 \: or \: x = 12 \\ but</strong><strong>,</strong><strong> \: base \: cannot \: be \: negative \:  \\  so</strong><strong>,</strong><strong> \:  - 15 \: is \: rejected \\ now </strong><strong>,</strong><strong>\:height = 12 \: cm \\ base = x + 3 \\ base = 12 + 3 \\ so</strong><strong>,</strong><strong> \: base = 15cm

hope it will be helpful for you!!

Plz plz mark as brainliest!!!

Similar questions