Math, asked by gokul75, 1 year ago

a triangle has sides 17, 25 and 26 m find its area

Answers

Answered by Anonymous
23
\textbf{\huge{ANSWER:}}

Given:

Sides = 17 m , 25 m, 26 m

Area of a triangle can be also taken out by the Heron's Formula. That is:

 \sqrt{s(s - a)(s - b)(s - c)}

Where,

s = Semi-perimeter ( Perimeter/2 )

a , b , c = Sides of the triangle

Putting the values in the formula:

s = Perimeter/2

Perimeter = 17 + 25 + 26 = 68

s = 68/2 = 34 m

ATQ:

 \sqrt{34(34 - 17)(34 - 25)(34 - 26)} \\ \\ = > \sqrt{34(17)(9)(8)} \\ \\ = > 204 \: {m}^{2}

Hope it Helps!! :)
Answered by AarohiG
13
\huge{\mathcal{Hi\: there!}}

_______________________

Solution :

Let the sides of the triangle be

a = 17 m

b = 25 m

c = 26 m.

Now,

We will use Heron's Formula here, to find area of triangle.

According to which;

 \mathsf{Area  \: of \: Δ =  \sqrt{s(s - a)(s - b)(s - c)}  }

Here,

S stands for 'semi - perimeter'.

 \mathsf{s =  \frac{a + b + c}{2} } \\    \\  \mathsf{s =  \frac{17 + 25 + 26}{2} } \\  \\  \mathsf{s =  \frac{68}{2} } \\  \\  \mathsf{s = 34 \: m}

Now,

 \mathsf{area \:of \: Δ  } =  \\  \\ \mathsf{  \sqrt{34(34 - 17)(34 - 25)(34 - 26)} } \\  \\  \mathsf{34 \times 17 \times 9 \times 8} \\  \\ \mathsf{ \sqrt{41616} } \\  \\  =  \mathsf{204 \: m {}^{2} }

Hence, the area of triangle is 204 m²

_______________________

Thanks for the question !

☺️❤️☺️
Similar questions