Math, asked by nayanmanocha8229, 9 months ago

A triangular facet in a cad model has vertices: p1 (0,0,0); p2(1,1,0) and p3(1,1,1). The area of the facet is

Answers

Answered by jitendra420156
0

Therefore the area of a triangle=2 square units

Step-by-step explanation:

Given ,a triangular  facet in a cab model has vertices P_1 (0,0,0),  P_2 (1,1,0) and P_3 (1,1,1).

\vec{P_1P_2}= (1-0,1-0,0-0)=(1,1,0)     | \vec{P_1P_2}|=\sqrt{1^2+1^2+0}=\sqrt{2}

\vec {P_2P_3}=(1-1,1-1,1-0)=(0,0,1)         |\vec {P_2P_3}|=\sqrt{0+0+1^2} = 1

\vec{P_1P_2} \times\vec {P_2P_3} =\left|\begin{array}{ccc} \hat{i} &\hat{j}&\hat{k}\\1&1&0\\0&0&1\end{array}\right| = \hat{i}+\hat {j}  

|\vec{P_1P_2} \times \vec {P_2P_3}|=\sqrt{1^2 +1^2} =\sqrt{2}

Therefore the area of a triangle

    | \vec{P_1P_2}|.|\vec {P_2P_3}|.|\vec{P_1P_2} \times \vec {P_2P_3}|

=\sqrt{2}.1.\sqrt{2}

= 2 square units

Similar questions