Physics, asked by ksahanaj801, 9 months ago

A truck of mass 1000kg increases its speed from 36km/hr to 72km/hr. Find the increase in its kinetic energy ​

Answers

Answered by Anonymous
31

Answer :

➥ The increase in it's kinetic energy = 150000 J

Given :

➤ Mass of a truck (m) = 1000 kg

➤ Intial velocity of a truck (u) = 36 km/h

➤ Final velocity of a truck (v) = 72 km/h

To Find :

➤ Increase in it's kinetic energy (K.E) = ?

Solution :

Let ,

The Intial kinetic energy be "K.E₁" and the final kinetic energy be "K.E₂"

◈ Intial velocity (u) = 36 km/h = 36 × 5/18 = 10 m/s

◈ Final velocity (v) = 72 km/h = 72 × 5/18 = 20 m/s

 \tt{: \implies K.E = K.E_{1} - K.E_{2}}

\tt{: \implies K.E = \dfrac{1}{2}m {v}^{2} -  \dfrac{1}{2}m {u}^{2} }

\tt{: \implies K.E =  \dfrac{1}{2}  \times m( {v}^{2}  -  {u}^{2}) }

\tt{: \implies K.E =  \dfrac{1}{2}  \times 1000( {20}^{2}  -  {10}^{2}) }

\tt{: \implies K.E =  \dfrac{1}{\cancel{\:2\:}}  \times \cancel{1000}(400 - 100) }

\tt{: \implies K.E = 1 \times 500 \times 300}

\tt{: \implies K.E = 500 \times 300}

\bf{: \implies \underline{ \:  \:  \underline{ \purple{ \:  \: K.E = 150000  \: J\:  \: }} \:  \: }}

Hence, the increase in it's kinetic energy is 150000 J.

Answered by Anonymous
4

\star\:\:\:\bf\large\underline\red{Given:–}

☛︎ Mass of the truck, m = 1000 kg

☛︎ Initial velocity, u = 36 km/hr

= 36 × 5/18

= 10 m/s

☛︎ Increased velocity, v = 72 km/hr

= 72 × 5/18

= 20 m/s

\star\:\:\:\bf\large\underline\red{To\:find:—}

The increase in its kinetic energy = ?

\star\:\:\:\bf\large\underline\red{Solution:—}

\boxed{\bf{\blue{Formula: Kinetic\:energy=\frac{1}{2}mv²}}}

Initial\:kinetic\:energy=\frac{1}{2}×1000×(10)²

➝initial\:kinetic\:energy=50000\:J

Increased\:kinetic\:energy=\frac{1}{2}×1000×(20)²

➝Increased\:kinetic\:energy=200000\:J

Work done = change in kinetic energy

= 200000 - 50000 J

= 150000 J

Therefore,the increase in its kinetic energy is 150000 J

__________________________

Similar questions