Math, asked by Shaina11, 1 year ago

A trust has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year , and second bond pays 7% interest per year . Using matrix multiplication , determine how to divide Rs 30000 among the two bonds . If the trust fund must obtain an annual total interest of 1) Rs 1800 2) 2000

Answers

Answered by mathdude500
0

\large\underline{\sf{Solution-}}

Let assume that

Amount invested in first type of bond be Rs x

Amount invested in second type of bond be Rs (30000 - x)

Given that, The first bond pays 5 % interest per annum and second one pays 7% interest per annum.

So, matrix form of the above data is as

\sf \: A = \bigg[ \begin{matrix}x& 30000 - x  \end{matrix} \bigg] \\  \\

B = \left[\begin{array}{c}  \dfrac{5}{100} \\  \\ \dfrac{7}{100} \end{array}\right] \\  \\

Given that,

\sf \: Interest\:received \:  = \:  Rs \: 1800 \\  \\

\sf \: AB \:  = \:[ 1800] \\  \\

\sf \: \bigg[ \begin{matrix}x& 30000 - x  \end{matrix} \bigg]\left[\begin{array}{c}  \dfrac{5}{100} \\  \\ \dfrac{7}{100} \end{array}\right] = [ 1800] \\  \\

\sf\: \left[x \times \dfrac{5}{100} + (30000 - x) \times \dfrac{7}{100}   \right] = [ 1800] \\  \\

\sf\: \left[ \dfrac{5x + 210000 - 7x}{100}  \right] = [ 1800] \\  \\

\sf\: \left[ \dfrac{210000 - 2x}{100}  \right] = [ 1800] \\  \\

\sf \: 210000 - 2x = 180000 \\  \\

\sf \:  2x = 210000 - 180000 \\  \\

\sf \:  2x = 30000 \\  \\

\implies\sf \: x = 15000 \\  \\

Thus,

\implies\sf \: Investment\:in\:first\:bond= Rs \: 15000 \\  \\

and

\implies\sf \: Investment\:in\:second\:bond = Rs \: 15000 \\  \\

Given that,

\sf \: Interest\:received \:  = \:  Rs \: 2000 \\  \\

\sf \: AB \:  = \:[ 2000] \\  \\

\sf \: \bigg[ \begin{matrix}x& 30000 - x  \end{matrix} \bigg]\left[\begin{array}{c}  \dfrac{5}{100} \\  \\ \dfrac{7}{100} \end{array}\right] = [ 2000] \\  \\

\sf\: \left[x \times \dfrac{5}{100} + (30000 - x) \times \dfrac{7}{100}   \right] = [ 2000] \\  \\

\sf\: \left[ \dfrac{5x + 210000 - 7x}{100}  \right] = [ 2000] \\  \\

\sf\: \left[ \dfrac{210000 - 2x}{100}  \right] = [ 2000] \\  \\

\sf \: 210000 - 2x = 200000 \\  \\

\sf \:  2x = 210000 - 200000 \\  \\

\sf \:  2x = 10000 \\  \\

\implies\sf \: x = 5000 \\  \\

Thus,

\implies\sf \: Investment\:in\:first\:bond= Rs \: 5000 \\  \\

and

\implies\sf \: Investment\:in\:second\:bond = Rs \: 25000 \\  \\

Similar questions