Math, asked by kspriya, 9 months ago

a two digit number is such that the product of its digit is 18,wheb 63 is subtracted from the number ,the digits interchange their placed . find the number​

Answers

Answered by Anonymous
78

\huge\underline\bold\red{Answer!!}

let \: the \: tens \: digit \: be \: x.

then \: the \: units \: digts \:  =  \frac{18}{x}

 =  > number = 10x +  \frac{18}{x}

and number obtained by interchanging the digits

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 10 \times  \frac{18}{x}  + x

 (10x +  \frac{18}{x} ) - (10 \times  \frac{18}{x}  + x) = 63

 =  > 10x +  \frac{18}{x}  -  \frac{180}{x}  - x = 0

 =  > 9x -  \frac{162}{x}  - 63 = 0

 =  > 9x {}^{2}  - 63x - 162 = 0

 =  > x {}^{2}  - 7x - 18 = 0

 =  > (x - 9)(x + 2) = 0

 =  > x = 9, - 2

but \: a \: digit \: can \: never \: be \: ( - ve)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: so,x = 9

so \: the \: required \: number \: ,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 10 \times 9  +  \frac{18}{9}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 92

Hope it helps you ❤️ ✨

Answered by Anonymous
72

Your Answer:

Let the number at unit place be y and at tens place be x

So, the number is 10x+y

ATQ,

xy = 18 ------------->(1)

and

\tt 10x + y -63 = 10y + x \\\\ \tt \Rightarrow 9x - 9y = 63 \\\\ \tt \Rightarrow 9(x-y) = 63 \\\\ \tt \Rightarrow x-y = \dfrac{63}{9} \\\\ \tt \Rightarrow x-y = 7  \\\\ \tt \Rightarrow x = y +7

Replacing value of x in Equation 1

\tt (y+7) y = 18\\\\ \tt \Rightarrow  y^2  +7y - 18 = 0 \\\\ \tt \Rightarrow y^2 +9y - 2y -18 = 0 \\\\ \tt \Rightarrow y(y+9) - 2(y+9) = 0 \\\\ \tt \Rightarrow (y-2)(y+9) = 0

Now equating the factors with zero

y - 2 = 0

=> y = 2

and

y + 9 = 0

=> y = -9

So, y can not be in negative as it is a digit of the number

So, y = 2

and x = 9

And the number is 10x+y = 10(9) + 2 = 90 + 2 = 92

So, the number is 92.

Similar questions