Math, asked by Ayush062002, 1 year ago

A two digit number is such that the product of its digit is 14. If 45 is added to the number, the digit interchange their place. Find the number?

Answers

Answered by Ennu
3
the nmbr is 27
product of 2 and 7 is 14
when we add 45 to it then it becomes 72

Ayush062002: right..... but I need process
Rohanchaudhary11: ennu I want to be your friend
Rohanchaudhary11: please inbox me
suyash38: hyy
suyash38: can I be your friend
Answered by Anonymous
4
Hi.

Good Question...Keep Progressing...

Here is your answer---

Let the once digit in a number be y and tens digit be x
Thus, Number = 10x +y

According to the Question,
     x * y = 14 --------------------------------------------eq(i) 
 Also,
         10x +y +45 = 10y+x    {As per as question}
           10x - x +y - 10y = -45
             9x - 9y = -45
               9(x - y) = -45
 Thus,       x - y = -5 
                 y =  x + 5 ----------------------------------eq(2)

Putting eq(2) in the eq(1)
 We get, 
    x * y = 14
   x * (x +5) = 14
   x ^2 + 5x = 14
    x^2 +5x - 14 = 0
Splitting the middle term,
  x^2 + 7x - 2x - 14 = 0 
  x( x - 7) - 2( x -7) = 0
    (x - 7)(x - 2) = 0
By Zero Product Rule,
   x - 7 = 0                                       x - 2 = 0
    x = 7                                               x = 2
For, x = 7 in eq(i)
 7 * y =14
     y = 2

For, x = 2 in eq(i)
  2 * y =14
   y = 7

Thus, when x is 7 and y is 2,
  Number = 10x + y
                = 10(7) + 2
                = 70 +2
                = 72
Also, when x is 2 and y is 7,
    Number = 10x + y
                  = 10(2) + 7
                  =  20 + 7
                  = 27

Thus, two digits number will be 72 or 27.

____________________________________
____________________________________



Hope it helps.

Please mark this answer as Brainliest.

Have a nice day.
Similar questions