Math, asked by Nolansia1516, 1 year ago

A two digit number is such that the product of its digits is 18. When 63 us subtracted from the number, the digits interchange their places. Find the number.

Answers

Answered by Rishabh9582
1
Let the number be 10x+y
A/Q,
xy=18
x=18/y .........(ⅰ)
10x+y-63=10y+x
9x-9y=63
x-y=7
From(ⅰ),we get
18/y-y=7
18-y²/y=7
18-y²=7y
y²+7y-18=0
y²+9y-2y-18=0
y(y+9)-2(y+9)=0
(y-2)(y+9)=0
y=2and-9
If y=2 then x=18/2=9
Number=10×9+2=92
If y=-9 then x=18/-9=-2
Number=10×-2-9=-29
Answered by Anonymous
1

{\green {\boxed {\mathtt {☆Solution}}}}

  \rm \: let \: the \: tens \: and \: unit \: digit \: of \: the \: required \: number \: be \: x \: and \: y \: respectively \: then \\  \rm \: xy = 18 \implies \: y =  \frac{18}{x}   \\   \rm \: \purple {\: and \: (10x + y) - 63 = 10y + x }\\   \rm\implies \: 9x - 9y = 63 \implies \: x - y = 7 \:  \:  \:  \: .....(1) \\  \rm \orange{ \: putting \: y =  \frac{18}{x }  \: into \: (1) }\\  \rm \: x -  \frac{18}{x}  = 7 \\  \rm \: x {}^{2}   - 18 - 7x \implies \: x {}^{2}  - 7x - 18 \\  \rm  \implies \: x {}^{2}  - 9x + 2x - 18 = 0 \implies \: x(x - 9) + 2(x - 9) = 0 \\  \rm \implies(x - 9)(x + 2) = 0 \\  \rm \: x = 9 \: or \: x =  - 2 \:  \:  \:  \: ( but \: a \: digit \: cannot \: be \: negative) \\ \rm   \red {\:  \boxed{\therefore \: x = 9}} \\  \rm \: putting \: x = 9 \: in \: (1) we \: get \: y = 2 \\  \rm \: thus \: the \: tens \: digit \: is \: 9 \: and \: the \: unit \: digit \: is \: 2  \\  \rm hence \: the \: required \:  number \: is \: 92

Similar questions