Math, asked by harikamalcr7pro, 2 months ago

A two digit number is such that the product of the digit is 35, when 18 is added to the number, the digit interchange their places. Find the number.

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\bf\: Let-\begin{cases} &\sf{digit \: at \: tens \: place \: be \: y} \\ &\sf{digits \: at \: ones \: place \: be \: x} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{number \: formed = 10 y + x} \\ &\sf{reverse \: number = 10x + y} \end{cases}\end{gathered}\end{gathered}

Now,

According to statement,

The product of the digits = 35

\bf\implies \:\boxed{ \bf{ xy = 35}}

Also,

According to second condition,

When 18 is added to the number, the digit interchange their places.

It means, Original number + 18 = Reverse number

\rm :\longmapsto\:10y + x + 18 = 10x + y

\rm :\longmapsto\:10x + y - 10y - x = 18

\rm :\longmapsto\:9x - 9y = 18

\rm :\longmapsto\:9(x - y) = 18

\rm :\longmapsto\:x - y= 2

\rm :\implies\:x = y + 2 -  -  - (2)

On substituting (2) in (1), we get

\rm :\longmapsto\:(y + 2)y = 35

\rm :\longmapsto\: {y}^{2}  + 2y = 35

\rm :\longmapsto\: {y}^{2}  + 2y - 35 = 0

\rm :\longmapsto\: {y}^{2}  + 7y - 5y - 35 = 0

\rm :\longmapsto\:y(y + 7) - 5(y + 7) = 0

\rm :\longmapsto\:(y + 7)(y - 5) = 0

\bf\implies \:y = 5 \:  \:  \: as \: y \cancel  <  \: 0

On substituting y = 5 in equation (2), we get

\bf\implies \:x = 5 + 2 = 7

\begin{gathered}\begin{gathered}\bf\: Hence-\begin{cases} &\sf{digit \: at \: tens \: place \: be \: 5} \\ &\sf{digits \: at \: ones \: place \: be \: 7} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{number \: formed = 10 y + x = 50 + 7 = 57} \\ &\sf{reverse \: number = 10x + y = 70 + 5 = 75} \end{cases}\end{gathered}\end{gathered}

Hence,

  • Number formed = 57

Basic Concept Used :-

Writing Systems of  Equation from Word Problem.

1. Understand the problem.

  • Understand all the words used in stating the problem.

  • Understand what you are asked to find.

2. Translate the problem to an equation.

  • Assign a variable (or variables) to represent the unknown.

  • Clearly state what the variable represents.

3. Carry out the plan and solve the problem.

Similar questions