Math, asked by Ishann30, 16 days ago

if tanθ+sinθ=m and tanθ-sinθ=n then prove m²-n²=√(mn)​

Answers

Answered by mathdude500
3

Appropriate Question :-

If

\rm :\longmapsto\:tan\theta  + sin\theta  = m \:  \: and \:  \: tan\theta  - sin\theta  = n

Prove that,

\rm :\longmapsto\: {m}^{2} -  {n}^{2} = 4 \sqrt{mn}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:tan\theta  + sin\theta  = m

and

\rm :\longmapsto\:tan\theta   -  sin\theta  = n

Consider,

\rm :\longmapsto\: {m}^{2} -  {n}^{2}

\rm \:  =  \:  \: (m + n)(m - n)

On substituting the values of m and n, we get

\rm \:  =  \:  \: (tan\theta  + sin\theta  + tan\theta  - sin\theta )(tan\theta  + sin\theta  - tan\theta  + sin\theta )

\rm \:  =  \:  \: (2tan\theta )(2sin\theta )

\rm \:  =  \:  \: 4tan\theta sin\theta

\bf\implies \: {m}^{2} -  {n}^{2} = 4tan\theta sin\theta  -  -  - (1)

Now, Consider,

\rm :\longmapsto\:  \sqrt{mn}

\rm \:  =  \:  \:  \sqrt{(tan\theta  + sin\theta )(tan\theta  - sin\theta )}

\rm \:  =  \:  \:  \sqrt{ {tan}^{2}\theta  -  {sin}^{2}\theta }

\rm \:  =  \:  \:  \sqrt{\dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta } -  {sin}^{2}  \theta }

\boxed{ \rm{  \because \: tanx =  \frac{sinx}{cosx}}}

\rm \:  =  \:  \:  \sqrt{ {sin}^{2} \theta ( {sec}^{2} \theta  - 1)}

\rm \:  =  \:  \:  \sqrt{ {sin}^{2} \theta  {tan}^{2} \theta }

\boxed{ \rm{  \because \:  {sec}^{2}x = 1 +  {tan}^{2}x}}

\rm \:  =  \:  \: sin\theta tan\theta

Hence,

\bf\implies \:4 \sqrt{mn} = 4sin\theta tan\theta  -  -  -  - (2)

From equation (1) and (2), we concluded that

\bf :\longmapsto\: {m}^{2} -  {n}^{2} = 4 \sqrt{mn}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions