Math, asked by Geniusbaba, 1 year ago

A Two digit number is such that the product of the digits is 14. When 45 is added to the number, then the digits interchange their places. Find the number.

Answers

Answered by SKali
2
The number is 27. If we multiply 2 and 7 their product will be 14 and when we add 45 in 27 the numbers change their places.

I hope this will help you.
THANKS
Answered by hanan256
2

Step-by-step explanation:

Hi

Let the once digit in a number be y and tens digit be x

Thus, Number = 10x +y

According to the Question,

    x * y = 14 --------------------------------------------eq(i) 

 Also,

        10x +y +45 = 10y+x    {As per as question}

          10x - x +y - 10y = -45

            9x - 9y = -45

              9(x - y) = -45

 Thus,       x - y = -5 

                y =  x + 5 ----------------------------------eq(2)

Putting eq(2) in the eq(1)

 We get, 

   x * y = 14

  x * (x +5) = 14

  x ^2 + 5x = 14

   x^2 +5x - 14 = 0

Splitting the middle term,

 x^2 + 7x - 2x - 14 = 0 

 x( x - 7) - 2( x -7) = 0

   (x - 7)(x - 2) = 0

By Zero Product Rule,

  x - 7 = 0                                       x - 2 = 0

   x = 7                                               x = 2

For, x = 7 in eq(i)

 7 * y =14

    y = 2

For, x = 2 in eq(i)

 2 * y =14

  y = 7

Thus, when x is 7 and y is 2,

 Number = 10x + y

               = 10(7) + 2

               = 70 +2

               = 72

Also, when x is 2 and y is 7,

   Number = 10x + y

                 = 10(2) + 7

                 =  20 + 7

                 = 27

Thus, two digits number will be 72 or 27.

Hope it helps.

Please mark this answer as Brainliest.

Similar questions