A two digit number is such that the product of the digits is 20. If 9 is subtracted from the number, the digits interchange their places. Find the number.
Answers
- Product of digits of a two digit number is 20
- If 9 is subtracted from the number, the digits interchange their places
- The original number
- Let the ten's digit be "x"
- Let the one's digit be "y"
〚 Product of digits is 20 〛
➠ x × y = 20
➠ ------- (1)
➠ 10x + y -------- (a)
➠ 10y + x
〚 When 9 is subtracted from the number, the digits interchange their places 〛
So,
➜ 10x + y - 9 = 10y + x
➜ 10x - x + y - 10y = 9
➜ 9x - 9y = 9
〚 Dividing the above equation by "9"〛
➜ x - y = 1 ------ (2)
➜ x - y = 1
➜
➜
➜ y = 20 - y²
➜ y² + y - 20 = 0
➜ y² + 5y - 4y - 20 = 0
➜ y(y + 5) -4(y + 5) = 0
➜ (y + 5)(y - 4) = 0
Hence,
- y = -5
- y = 4
Case I [ y = -5 ]
➜
➜
➨ x = -4
Case II [ y = 4 ]
➜
➜
➨ x = 5
Thus we got 2 pairs
- x = -4 , y = -5
- x = 5 , y = 4
Original number
➠ 10x + y
➜ 10(-4) + (-5)
➜ -40 -5
➨ -45
Original number
➠ 10x + y
➜ 10(5) + 4
➜ 50 + 4
➨ 54
- Hence the original number is 54 or -45
- Product of digits of a two digit number is 20
- If 9 is subtracted from the number, the digits interchange their places
- The original number
Let the ten's digit be "x"
Let the one's digit be "y"
〚 Product of digits is 20 〛
➠ x × y = 20
➠ ------- (1)
➠ 10x + y -------- (a)
➠ 10y + x
〚 When 9 is subtracted from the number, the digits interchange their places 〛
So,
➜ 10x + y - 9 = 10y + x
➜ 10x - x + y - 10y = 9
➜ 9x - 9y = 9
〚 Dividing the above equation by "9"〛
➜ x - y = 1 ------ (2)
➜ x - y = 1
➜
➜
➜ y = 20 - y²
➜ y² + y - 20 = 0
➜ y² + 5y - 4y - 20 = 0
➜ y(y + 5) -4(y + 5) = 0
➜ (y + 5)(y - 4) = 0
Hence,
y = -5
y = 4
Case I [ y = -5 ]
➜
➜
➨ x = -4
Case II [ y = 4 ]
➜
➜
➨ x = 5
Thus we got 2 pairs
x = -4 , y = -5
x = 5 , y = 4
Original number
➠ 10x + y
➜ 10(-4) + (-5)
➜ -40 -5
➨ -45
Original number
➠ 10x + y
➜ 10(5) + 4
➜ 50 + 4
➨ 54
- Hence the original number is 54 or -45