Math, asked by vaghelashivang724, 5 months ago

A two digit number is such that the product of the digits is 20. If 9 is subtracted from the number, the digits interchange their places. Find the number. ​

Answers

Answered by EliteZeal
115

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Product of digits of a two digit number is 20

 \:\:

  • If 9 is subtracted from the number, the digits interchange their places

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • The original number

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the ten's digit be "x"

  • Let the one's digit be "y"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

Product of digits is 20

 \:\:

➠ x × y = 20

 \:\:

 \sf x = \dfrac { 20 } { y } ------- (1)

 \:\:

 \underline{\bold{\texttt{Original number :}}}

 \:\:

➠ 10x + y -------- (a)

 \:\:

 \underline{\bold{\texttt{Reversed number :}}}

 \:\:

➠ 10y + x

 \:\:

When 9 is subtracted from the number, the digits interchange their places

 \:\:

So,

 \:\:

➜ 10x + y - 9 = 10y + x

 \:\:

➜ 10x - x + y - 10y = 9

 \:\:

➜ 9x - 9y = 9

 \:\:

Dividing the above equation by "9"

 \:\:

➜ x - y = 1 ------ (2)

 \:\:

 \underline{\bold{\texttt{Putting the value of "x" from (1) to (2)}}}

 \:\:

➜ x - y = 1

 \:\:

 \sf \dfrac { 20 } { y } - y = 1

 \:\:

 \sf \dfrac { 20 - y^2} { y  } = 1

 \:\:

➜ y = 20 - y²

 \:\:

➜ y² + y - 20 = 0

 \:\:

➜ y² + 5y - 4y - 20 = 0

 \:\:

➜ y(y + 5) -4(y + 5) = 0

 \:\:

➜ (y + 5)(y - 4) = 0

 \:\:

Hence,

 \:\:

  • y = -5

  • y = 4

 \:\:

Case I [ y = -5 ]

 \:\:

 \underline{\bold{\texttt{Putting y = -5 in (1) }}}

 \:\:

 \sf x = \dfrac { 20 } { y }

 \:\:

 \sf x = \dfrac { 20 } { -5}

 \:\:

➨ x = -4

 \:\:

Case II [ y = 4 ]

 \:\:

 \underline{\bold{\texttt{Putting y = 4 in (2) }}}

 \:\:

 \sf x = \dfrac { 20 } { y }

 \:\:

 \sf x = \dfrac { 20 } { 4}

 \:\:

➨ x = 5

 \:\:

Thus we got 2 pairs

  • x = -4 , y = -5

  • x = 5 , y = 4

 \:\:

 \underline{\bold{\texttt{Putting these values in (a) }}}

 \:\:

Original number

 \:\:

➠ 10x + y

 \:\:

➜ 10(-4) + (-5)

 \:\:

➜ -40 -5

 \:\:

➨ -45

 \:\:

Original number

 \:\:

➠ 10x + y

 \:\:

➜ 10(5) + 4

 \:\:

➜ 50 + 4

 \:\:

➨ 54

 \:\:

  • Hence the original number is 54 or -45
Answered by Ranveerx107
0

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Product of digits of a two digit number is 20

 \:\:

  • If 9 is subtracted from the number, the digits interchange their places

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • The original number

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the ten's digit be "x"

Let the one's digit be "y"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

〚 Product of digits is 20 〛

 \:\:

➠ x × y = 20

 \:\:

 \sf x = \dfrac { 20 } { y } ------- (1)

 \:\:

 \underline{\bold{\texttt{Original number :}}}

 \:\:

➠ 10x + y -------- (a)

 \:\:

 \underline{\bold{\texttt{Reversed number :}}}

 \:\:

➠ 10y + x

 \:\:

〚 When 9 is subtracted from the number, the digits interchange their places 〛

 \:\:

So,

 \:\:

➜ 10x + y - 9 = 10y + x

 \:\:

➜ 10x - x + y - 10y = 9

 \:\:

➜ 9x - 9y = 9

 \:\:

〚 Dividing the above equation by "9"〛

 \:\:

➜ x - y = 1 ------ (2)

 \:\:

 \underline{\bold{\texttt{Putting the value of "x" from (1) to (2)}}}

 \:\:

➜ x - y = 1

 \:\:

 \sf \dfrac { 20 } { y } - y = 1

 \:\:

 \sf \dfrac { 20 - y^2} { y  } = 1

 \:\:

➜ y = 20 - y²

 \:\:

➜ y² + y - 20 = 0

 \:\:

➜ y² + 5y - 4y - 20 = 0

 \:\:

➜ y(y + 5) -4(y + 5) = 0

 \:\:

➜ (y + 5)(y - 4) = 0

 \:\:

Hence,

 \:\:

y = -5

y = 4

 \:\:

Case I [ y = -5 ]

 \:\:

 \underline{\bold{\texttt{Putting y = -5 in (1) }}}

 \:\:

 \sf x = \dfrac { 20 } { y }

 \:\:

 \sf x = \dfrac { 20 } { -5}

 \:\:

➨ x = -4

 \:\:

Case II [ y = 4 ]

 \:\:

 \underline{\bold{\texttt{Putting y = 4 in (2) }}}

 \:\:

 \sf x = \dfrac { 20 } { y }

 \:\:

 \sf x = \dfrac { 20 } { 4}

 \:\:

➨ x = 5

 \:\:

Thus we got 2 pairs

x = -4 , y = -5

x = 5 , y = 4

 \:\:

 \underline{\bold{\texttt{Putting these values in (a) }}}

 \:\:

Original number

 \:\:

➠ 10x + y

 \:\:

➜ 10(-4) + (-5)

 \:\:

➜ -40 -5

 \:\:

➨ -45

 \:\:

Original number

 \:\:

➠ 10x + y

 \:\:

➜ 10(5) + 4

 \:\:

➜ 50 + 4

 \:\:

➨ 54

 \:\:

  • Hence the original number is 54 or -45
Similar questions