a two digit number is such that the product of the digits is 20. If 9 is added to the number the digits interchange their places. find the number
Answers
Answered by
8
Assumption
Unit's Place be b
Also,
Ten's Place be a
Number = (10a + b)
Situation :-
⇒ Original Number + 9 = Interchange Number
⇒ (10a + b) + 9 = (10b + a)
⇒ 9 = 10b + a - 10a - b
⇒ 9 = 9b - 9a
⇒ 9 = 9(b - a)
⇒ 1 = b - a
⇒ b = a + 1 ............... (1)
Product of Digits :
⇒ ab = 20 ................. (2)
⇒ a(a + 1) = 20
⇒ a² + a = 20
⇒ a² + a - 20 = 0
⇒ a² + 5a - 4a – 20 = 0
⇒ a(a + 5) - 4(a + 5) = 0
⇒ (a - 4)(a + 5) = 0
⇒ a = 4 and, a = - 5
a = 4, as per it is a positive integer
⇒ ab = 20
⇒ 4 × b = 20
⇒ b = 5
New Number :-
⇒ Number = (10a + b)
⇒ Number = 10(4) + 5
⇒ Number = 40 + 5
⇒ Number = 45
Hence,
Similar questions