Math, asked by prachimannu, 5 months ago

a. Two numbers are in the ratio 11:15. If the difference of the numbers is 32, find the two
numbers.
b. Calculate the area of a circle whose diameter us 1.4 m.

Answers

Answered by aviralkachhal007
4

\large{\mathtt{\underbrace{\red{✠\:Required\:Answer\:✠}}}}

✯ Question 1 :

Two numbers are in the ratio 11:15. If the difference of the numbers is 32, find the two

numbers.

✯ Solution 1 :

Let the numbers be '11x' and '15x'

Their difference = 32

A.T.Q.

15x - 11x = 32

4x = 32

x = \frac{32}{4}

x = \frac{\cancel{32}}{\cancel{4}}

=> x = 8

Value of numbers :-

11x = 11 × 8 = 88

15x = 15 × 8 = 120

✯ Question 2 :

Calculate the area of a circle whose diameter us 1.4 m.

✯ Solution 2 :

Diameter = 14m

Radius = \frac{D}{2} = \frac{14}{2} = 7m

\huge{\boxed{\mathtt{\color{aqua}{Area\:=\:πr²}}}}

Where,

  • π = \frac{22}{7}
  • R = Radius

Substituting the value, we get :-

Area = \frac{22}{7} \times 7 \times 7

Area = 22 × 7

\huge{\fcolorbox{blue}{aqua}{Area\:=\:154m²}}

Answered by ᏞovingHeart
53

\large{\underline{\underline{\sf{\green{Required \; Solution:}}}}}

1st question:

\implies \sf{Let \; 1st \; number \; be \; 11x.}

\implies \sf{Let \; 2nd \; number\; be \;15x.}

Now,

              \longmapsto \tt{11x - 15x = 32}

              \longmapsto \tt{4x = 32}

              \longmapsto \tt{ x= }\tt{ \dfrac{\cancel {32}}{\cancel 4} =8}

\tt{1^{st}\;number=11x=11\times8=\underline{88}}

\tt{2^{nd}\;number=15x=15\times8=\underline{120}}

             \boxed{\color {brown}{\sf Required\:numbers \begin{cases} \tt{88} \\ \tt 120 \end {cases}}}

2nd question:

\implies \sf{Diameter = 1.4}

\implies \sf{radius =\dfrac{d}{2} = \dfrac{1.4}{2} = 0.7 m}

\sf{Area \; of \; Circle}  \longmapsto \tt{ \pi\; r^2}

                      \longmapsto \tt{ \dfrac{22}{7} \times 0.7 \times 0.7}

                      \longmapsto \tt \dfrac{ 22}{7} \times 0.49

~~~~~~~~~~~ \boxed{\sf{\pink{Area= 1.54 \; m^2}}}

_______________

Hope it helps! :)

Similar questions