Math, asked by Anonymous, 2 months ago

A two wheeler depreciates at 20 % of its value every year.
If present value of the same be 90000, its depreciated
value would be 36864 after how many years?

Answers

Answered by HAZZARD3
2

Answer:

Present cost= Co

Rate = 20%

Time = 2 years

Let after 2 years cost, C=208000

Thus, C=Co(1+100R)T

208000=Co(1−10020)2

Co=325000

Thus present cost is 325000 Rs.

HOPE IT HELPED U

THANK U

F.O.L.L.O.W ME PLSS

Answered by mathdude500
6

\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{Original_{(price)}, P = Rs \: 90000} \\ &\sf{Depreciated_{(price)}, A = Rs \: 36864}\\ &\sf{Rate_{(depreciated)}, R = 20\% \: per \: annum} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: Find - \begin{cases} &\sf{Time \: period,  \: n \: years}\end{cases}\end{gathered}\end{gathered}

\large\underline{\sf{Solution-}}

↝Given that

\:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:Original_{(price)}, P = Rs \: 90000

\:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:Depreciated_{(price)}, A = Rs \: 36864

\:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \:  \sf \:Rate_{(depreciated)}, R = 20\% \: per \: annum

 \rm \: Let \: time \: in \: which \: value \: depreciates \: be \: n \: years

We know,

↝The depreciation amount is given by

\rm \:Depreciated_{(price)} = Original_{(price)}{\bigg( 1 - \dfrac{Rate_{(depreciated)}}{100} \bigg)}^{n}

↝On substituting all the above values, we get

\rm :\longmapsto\:36864 = 90000 {\bigg( 1 - \dfrac{20}{100} \bigg)}^{n}

\rm :\longmapsto\:\dfrac{36864}{90000}  =  {\bigg( \dfrac{100 - 20}{100} \bigg)}^{n}

\rm :\longmapsto\:\dfrac{256}{625}  =  {\bigg( \dfrac{80}{100} \bigg)}^{n}

\rm :\longmapsto\: {\bigg( \dfrac{4}{5} \bigg)}^{4}  =  {\bigg( \dfrac{4}{5} \bigg)}^{n}

\bf\implies \:n \:  =  \: 4 \: years

\overbrace{ \underline { \boxed { \bf \therefore \: The \: price \: depreciates \: in \: 4 \: years}}}

Similar questions