A uniform meter stick of mass 0.20 kg is pivoted at the 40-cm mark. where should one hang a mass of 0.50 kg to balance the stick?
Answers
Answered by
4
From the figure attached;
0.5 kg = 0.5 x 10 N = 5N
0.2 kg = 0.2 x 10 N = 2N
The weight of the stick acts at its centre.
Taking moment about the pivot
Anticlockwise moments = Clockwise moments
5x = 10 x 20
5x = 200
x = 40
the 0.5 kg mass should be hanged at = (40 - 40) cm mark
It should be hanged at the 0 cm mark
0.5 kg = 0.5 x 10 N = 5N
0.2 kg = 0.2 x 10 N = 2N
The weight of the stick acts at its centre.
Taking moment about the pivot
Anticlockwise moments = Clockwise moments
5x = 10 x 20
5x = 200
x = 40
the 0.5 kg mass should be hanged at = (40 - 40) cm mark
It should be hanged at the 0 cm mark
Attachments:
Answered by
16
Answer:
36 cm
Step-by-step explanation:
Mass of stick m1 = 0.20 kg at mid point, Total length L= 1.0 m, pivot at 0.40 m, attached mass m2 = 0.50 kg
Applying rotational equilibrium τ(net) =0
(m1 g)* r1 = (m2 g) *r2
(0.2)(0.1 m) = (0.5)(x)
x = 0.40 m (measured away from 40 cm mark)
---> gives a position on the stick of 36 cm
Similar questions