Physics, asked by kahlonvarinder9476, 1 year ago

A uniform rope of length 12 and mass 6 kg hangs vertically from a rigid support a block of mass 2 kg is attached to the free end of the rope i transferred files of wavelength 0.06 m is produced at the lower end of the rope what is the wavelength of the balls when it reaches the top of the rope

Answers

Answered by topanswers
28

Given:

Rope length = 12

Rope mass = 6

Block mass = 2 kg

Wavelength = 0.06 m

To find:

The wavelength of the balls when it reaches the top of the rope.

Solution:

By formula,

Velocity = √T / m

Where,

T - tension

m - mass per unit length.

By law,

Tension ∝ Velocity

As the tension of the rope increases, the velocity of the rope also increases.

Therefore,

Velocity of the rope / velocity of the blovk  = √Tension in the rope / √Tension in the blovk

√2 * 9.8 / 8 * 9.8

1/2

As the frequency is same,

Wavelength is calculated by,

∴ Wavelength of the balls = 2 * Wavelength of the files

2 x 0.06

0.12 m

Hence, the wavelength of the balls when it reaches the top of the rope is 0.12 m.

Similar questions