a vector of. 10 root2. (10×2^1/2) units in x-y plane
Attachments:
yasaswiyen:
plz answer
Answers
Answered by
13
Since the vector is in $\mathrm{X-Y}$ plane, it must not have a component in the $\mathrm{Z}$ direction, hence the coefficient of $k$ is zero.
Thus the vector is $\mathrm{ 10i+10j}$, where the magnitude is given by , according to the question.
Thus the vector is $\mathrm{ 10i+10j}$, where the magnitude is given by , according to the question.
Answered by
11
HLO THERE
YOUR ANSWER IS. 10i+ 10j
here how
the resultant is equal to. whole root of 10square +10square+2×10×10cos90
cos 90. Because X and y axis are perpendicular to each other
cos90 =0
therefore it will take form of whole root of 100+100 =root of 200
that will be 10✓2
hence proved
for any query. comment down
YOUR ANSWER IS. 10i+ 10j
here how
the resultant is equal to. whole root of 10square +10square+2×10×10cos90
cos 90. Because X and y axis are perpendicular to each other
cos90 =0
therefore it will take form of whole root of 100+100 =root of 200
that will be 10✓2
hence proved
for any query. comment down
Similar questions