Physics, asked by npanwar77777, 7 months ago

A vector x, when added to the resultant of the vectors A = 3î - 59 + 7k and ß = 2î +49-3k gives a unit vector
along Y-axis. Find the vector x.​

Answers

Answered by Anonymous
27

Correct Question:-

A vector x, when added to the resultant of the vectors \large\rm{ A = 3 \hat{i} - 5 \hat{j} + 7 \hat{k}} and B = 2î +4j-3k gives a unit vector

along Y-axis. Find the vector x.

Given that:

A = 3î - 5j + 7k

B = 2î + 4j - 3k

Answer:-

\large\rm { \vec{R} = \vec{A} + \vec{B}}

\large\rm { \vec{R} = 5 \hat{i} - \hat{j} + 4 \hat{k}}

\large\rm { \vec{x} + \vec{R} = j}

\large\rm { \vec{x} + 5 \hat{i} - \hat{j} + 4 \hat{k} = \hat{j}}

\large\rm { \vec{x} = -5 \hat{i} + 2 \hat{j} - 4 \hat{k}}

Answered by Anonymous
86

\huge\mathsf{\underbrace{\red{QUESTION:-}}} </p><p>

✨ A vector C when added to the resultant of the two vectors

 \green{\rm{\vec{A}\:=\:\hat{i}\:-\:2\hat{j}\:+\:4\hat{k}\:} </p><p>}

And

 \blue{\rm{\vec{B}\:=\:3\hat{i}\:+\:5\hat{j}\:-\:7\hat{k}\:} </p><p>}</p><p>

Gives a unit vector along x-axis . Find the vector C .

\huge\mathsf{\underbrace{\red{ANSWER:-}}} </p><p>

\mathsf{\gray{\underbrace{\blue{GIVEN:-}}}} </p><p>

A vector C when added to the resultant of the two vectors

\bf{\vec{A}\:=\:\hat{i}\:-\:2\hat{j}\:+\:4\hat{k}\:} </p><p>

And

 \pink{ \rm{\vec{B}\:=\:3\hat{i}\:+\:5\hat{j}\:-\:7\hat{k}\:} }</p><p>

Gives a unit vector along x-axis .

\mathsf{\gray{\underbrace{\blue{TO\: FIND:-}}}} </p><p>

Find the vector C .

  \huge\mathsf{\gray{\underbrace{\blue{SOLUTION:-}}}} </p><p>

Let, R be the resultant of vector A and vector B .

 \red{\rm{\vec{R}\:=\:[\hat{i}\:-\:2\hat{j}\:+\:4\hat{k}]\:+\:[3\hat{i}\:+\:5\hat{j}\:-\:7\hat{k}]\:} </p><p>}

\rm{\implies\:\vec{R}\:=\:\hat{i}\:-\:2\hat{j}\:+\:4\hat{k}\:+\:3\hat{i}\:+\:5\hat{j}\:-\:7\hat{k}\:}</p><p>

 \green{\rm{\implies\:\vec{R}\:=\:\hat{i}\:+\:3\hat{i}\:-\:2\hat{j}\:+\:5\hat{j}\:+\:4\hat{k}\:-\:7\hat{k}\:}</p><p> }

\rm{\blue{\implies\:\vec{R}\:=\:4\hat{i}\:+\:3\hat{j}\:-\:3\hat{k}\:}}</p><p>

According to the question,

☯️The sum of vector C and vector R gives a unit vector along x-axis .

\pink\checkmark \:\rm\red{\hat{i}}

represents along x-axis.

  \pink\checkmark \:  \rm\red{\hat{j}}

Represents along y-axis .

 \pink \checkmark \:  \rm\red{\hat{k}}

Represents along z-axis .

Hence,

\orange\checkmark\:\rm{\purple{\vec{C}\:+\:\vec{R}\:=\:1\hat{i}\:}}

 \blue{\rm{\implies\:\vec{C}\:=\:1\hat{i}\:-\:\vec{R}\:}}

 \green{\bf{\implies\:\vec{C}\:=\:1\hat{i}\:-\:[4\hat{i}\:+\:3\hat{j}\:-\:3\hat{k}]\:}}</p><p>

 \orange{\rm{\implies\:\vec{C}\:=\:1\hat{i}\:-\:4\hat{i}\:-\:3\hat{j}\:+\:3\hat{k}\:}}</p><p>

\rm{\red{\implies\:\vec{C}\:=\:-\:3\hat{i}\:-\:3\hat{j}\:+\:3\hat{k}\:}}</p><p>

\rm\pink{\therefore} The \:  vector  \: C  \: is “\rm{\green{-\:3\hat{i}\:-\:3\hat{j}\:+\:3\hat{k}\:}}

Similar questions