Math, asked by swarooppaulm, 10 months ago

A vertical pole of height 10 metres stands at one corner of a rectangular field. The angle of elevation of its top from the farthest corner is 30°, while that from another corner is 60°. The area (in m^2)of rectangular
field is​

Answers

Answered by Anonymous
42

Answer

Area of rectangular field is \sf{\frac{200\sqrt{2}}{3}\:m^2}

\rule{100}2

Explanation

[ Refer the attachment for figure ]

Assume a rectangular field of sides ABCD such that AB = CD = x and AD = BC = y.

A vertical pole (ED) of height 10 m stands at one corner of a rectangular field.

The angle of elevation from the top and bottom of the tower at the bottom or end of the rectangular field is 30° or from the farthest corner is 30°.

And angle of elevation from the top of tower to the top of rectangular field is 60°.

In ∆DAB

By Pythagoras Theoram

\implies\:\sf{H^2\:=\:P^2\:+\:B^2}

\implies\:\sf{(BD)^2\:=\:(AB)^2\:+\:(AD)^2}

\implies\:\sf{(BD)^2\:=\:x^2\:+\:y^2}

\implies\:\sf{BD\:=\:\sqrt{x^2\:+\:y^2}} ---- [1]

In ∆EDC

\implies\:\sf{tan60^{\circ}\:=\:\dfrac{P}{B}}

\implies\:\sf{tan60^{\circ}\:=\:\dfrac{ED}{DC}}

\implies\:\sf{\sqrt{3}\:=\:\dfrac{10}{x}}

\implies\:\sf{x\:=\:\dfrac{10}{\sqrt{3}}} ---- [2]

In ∆EDB

\implies\:\sf{tan30^{\circ}\:=\:\dfrac{ED}{BD}}

\implies\:\sf{\dfrac{1}{\sqrt{3}}\:=\:\dfrac{10}{BD}}

Cross-multiply them

\implies\:\sf{BD\:=\:10\sqrt{3}}

\implies\:\sf{\sqrt{x^2\:+\:y^2}\:=\:10\sqrt{3}} [From (1)]

\implies\:\sf{x^2\:+\:y^2\:=\:(10\sqrt{3})^2}

\implies\:\sf{x^2\:+\:y^2\:=\:300} ---- [3]

Substitute value of x = 10/√3 in equation (3)

\implies\:\sf{\bigg(\dfrac{10}{\sqrt{3}}\bigg)^2\:+\:y^2\:=\:300}

\implies\:\sf{\dfrac{100}{3}\:+\:y^2\:=\:300}

\implies\:\sf{\dfrac{100\:+\:3y^2}{3}\:=\:300}

\implies\:\sf{100\:+\:3y^2\:=\:900}

\implies\:\sf{3y^2\:=\:800}

\implies\:\sf{y^2\:=\:\dfrac{800}{3}}

 \implies  \: \sf y \:   =  \:  \dfrac{20 \sqrt{2} }{ \sqrt{3} }

We have to find the area of the rectangular field.

From above calculations we have -

  • x = length = 10/√3 m
  • y = breadth = 20√2/3 m

Area of rectangle = length × breadth

\implies\:\sf{x\:\times\:y}

\implies\:\sf{\dfrac{10}{\sqrt{3}}\:\times\:\dfrac{20\sqrt{2}}{\sqrt{3}}}

We know that 3 × 3 = (3)² = 3

\implies\:\sf{\dfrac{200\sqrt{2}}{3}}

Attachments:
Answered by RvChaudharY50
101

{\large\bf{\mid{\overline{\underline{Given:-}}}\mid}}

\red{\textbf{Refer To image First}} \:

  • Height of Pole = 10m = AE
  • Angle of Elevation of Top of Pole From Farthest point = angle ECA = 30°
  • Angle of Elevation of Another corner = angle EDA = 60°

\large\star{\underline{\tt{\red{Answer}}}}\star

In EDA ,

→ angle EDA = 60°

→ EA = Pole = 10m

Hence,

tan60 =  \frac{p}{b}  =  \frac{EA }{DA} \\  \\  \red\leadsto \:  \sqrt{3}  =  \frac{10}{DA}  \\  \\ DA \:  =   \frac{10}{ \sqrt{3} }  = CB  = l \: (length)

__________________________

Now,

In EAC,

→ angle ECA = 30°

→ EA = 10m = Pole

→ CA = Diagonal of Rectangle ABCD =√( + )

Hence ,,

tan30 =  \frac{EA}{ CA} \\  \\  \red\leadsto \:  \frac{1}{ \sqrt{3} }  =  \frac{10}{  \sqrt{ {l}^{2}  +  {b}^{2}} }  \\  \\ \red\leadsto \: \large\boxed{\bold{  \sqrt{ {l}^{2} +  {b}^{2}} = 10 \sqrt{3}   }} \\  \\ squaring \: both \: sides \: we \: get \\  \\ \red\leadsto \:  {l}^{2}  +  {b}^{2}  = 300

___________________________

Now, putting value of CB = length of Rectangle we get,,

( \frac{10}{ \sqrt{3} } )^{2}  +  {b}^{2}  = 300 \\  \\ \red{\boxed\implies} \:  \:  {b}^{2}  = 300 -  \frac{100}{3}  \\  \\ \red{\boxed\implies} \:  \:  \:  {b}^{2}  =  \frac{800}{3}  \\  \\ \red{\boxed\implies} \:  \: b =  \frac{20 \sqrt{2} }{ \sqrt{3} }

Now,

we know that,,,

\large\boxed{\bold{Area \:  of \:  Rectangle = l×b}} \:  \\  \\ putting \: values \:  \\  \\ \red\leadsto \: Area \:  =  \frac{10}{ \sqrt{3} }  \times  \frac{20 \sqrt{2} }{ \sqrt{3} }  \\  \\ \red\leadsto \: \pink{\large\boxed{\boxed{\bold{Area  =  \frac{200 \sqrt{2} }{3}  {m}^{2}  }}}}

Hence, Area of Rectangle ABCD will be (2002/3) ..

______________________________

\large\bold\star\underline\mathcal{Extra\:Brainly\:Knowledge:-}

1) Each of the interior angles of a rectangle is 90°.

2) The diagonals of a rectangle bisect each other.

3) The opposite sides of a rectangle are parallel.

4) The opposite sides of a rectangle are equal.

5) A rectangle whose side lengths are a and b has area = a×b×sin90° = a×b

6) A rectangle whose side lengths are a a and b b has perimeter 2(a + b)...

7) The length of each diagonal of a rectangle whose side lengths are a and b is √(a²+b²) ..

Attachments:
Similar questions