Math, asked by dakshikumu, 5 months ago


A vertical tower stands on a horizontal plane and is surmounted by a flag staff
of height 14m. From a point on the ground the angle of elevation of bottom and
top of the flag staff are 45 and 60° respectively. Find the height of the tower
and distance of the point from the tower.
Please answer as soon as possible!​

Answers

Answered by yadavsv09
5

Answer:

HOPE it helps ❤️❤️❤️❤️❤️❤️❤️❤️❤️

Attachments:
Answered by Anonymous
114

 \huge \bold {\underline{ \underline{ \underline{ \color{indigo}{ \:  \:  \: solution \:  \:  \: }}}}}

\implies \:In  \: △ \: CBD, \\    \: tan  \:  \:  30 	° =   \frac{BD}{BC}

 \frac{1}{ \sqrt{3} }    =   \frac{h}{x}

{\color{red}{x \:  =  \:  \sqrt{3} h \:  ------ 1)}}

⇒  In \:  \: △ \:  \: ABC , \\ tan \: 45°  =  \:  \frac{AB}{AB}

⇒  1=  \frac{7+h}{x}

{\color{blue}{x = 7 + h}}

{ \color{green}{⇒  \sqrt{3} h = 7 + h \:  \:  \:  \:  \:  \:    [ From ( 1 ) ]}}

⇒ \sqrt{3} h  - h = 7

⇒ ( \sqrt{3}  - 1)h \:  = 7

⇒ h =  \frac{7}{ \sqrt{3} - 1 }

 \bold{ \color{purple}★{ \:  \: rationalise \: \:  the \:  \: denominator \: }}★

h =  \frac{7}{ \sqrt{3}  - 1} \times   \frac{{ \sqrt{3}   +  1} }{{ \sqrt{3}   +  1} }

{ \color{pink}{∴  \: h =  \frac{7( \sqrt{3} + 1) }{ \sqrt{3}  - 1}}}  { \color{pink}=  \frac{7( 1.73 + 1) }{2} }

 \huge{ \boxed{ \color{blue}{h \:  = 9.55 \: m}}}

∴ Height of the tower is 9.55m.

__________________________

Attachments:
Similar questions