Math, asked by MichWorldCutiestGirl, 3 days ago

A well with 40 m internal diameter is dug 14 m deep. The soil taken out is spread all around to a width of 20 m to form a circular embankment, find the height of the embankment.

ـ Don't Spam➠ ​​

Answers

Answered by talpadadilip417
5

Step-by-step explanation:

given: The diameter of internal well =40 m.

The height of internal well =14 m

The weidth of ciscular embankment =20 m

To find: The height of the embarkment.

\color{orange} \underline{ \begin{array}{  || |l| ||  }  \hline  \color{magenta} \\ \hline \boxed{ \text{ \tt \: Solution:-}  }  \end{array}}

 \color{purple} \text{The volume of the well \(  \tt=\dfrac{\pi}{4} d_{1}^{2} \times h_{1} \) }

 \color{red} \text{The volume of embankment \( \tt =\dfrac{\pi}{4} d_{2}^{2} \times h_{2} \)}

 \color{olive} \[ \begin{array}{l} \tt \Rightarrow \cancel{\dfrac{\pi}{4}} d_{1}^{2} \times h_{1}=\cancel{\dfrac{\pi}{4}} d_{2}^{2} \times h_{2} \\ \\  \tt \Rightarrow(40)^{2} \times 14=(20)^{2} \times h_{2} \\ \\  \tt \Rightarrow h_{2}=\dfrac{(40)^{2} \times 14}{(20)^{2}} \\ \\  \tt \Rightarrow h_{2}=56 \end{array} \]

Hence, the height of embankment is 56 .

Similar questions