Math, asked by Savitarahane9, 7 months ago

A’ will contain how many elements from the original set A​

Answers

Answered by TheRiskyGuy
3

Answer:

</p><p></p><p>&lt;div class="emoji emoji_robot"&gt;</p><p>&lt;div class="emoji__siren"&gt;&lt;/div&gt;</p><p>&lt;div class="emoji__face"&gt;</p><p>&lt;div class="emoji__connector"&gt;&lt;/div&gt;</p><p>&lt;div class="emoji__eyes"&gt;</p><p>&lt;div class="emoji__eye"&gt;&lt;/div&gt;</p><p>&lt;div class="emoji__eye"&gt;&lt;/div&gt;</p><p>&lt;/div&gt;</p><p>&lt;div class="emoji__nose"&gt;&lt;/div&gt;</p><p>&lt;div class="emoji__mouth"&gt;&lt;/div&gt;</p><p>&lt;/div&gt;</p><p>&lt;/div&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>:root {</p><p>--color-white: #fff;</p><p>--color-dark: #4b4241;</p><p>--color-bg: #fffcee;</p><p>--tooth-pos: 6px;</p><p>}</p><p></p><p>* {</p><p>padding: 0;</p><p>margin: 0;</p><p>box-sizing: border-box;</p><p>}</p><p></p><p>body {</p><p>height: 100vh;</p><p>width: 100vw;</p><p>padding: 30px;</p><p>display: grid;</p><p>place-items: center;</p><p>background-color: var(--white);</p><p>}</p><p></p><p>.emoji {</p><p>width: 106px;</p><p>height: 106px;</p><p>position: relative;</p><p>border: 1px solid rgba(255, 255, 255, 0);</p><p>border-radius: 26%;</p><p>box-shadow: inset -8px -7px 0px rgba(0, 0, 0, 0.05);</p><p>}</p><p>.emoji_robot {</p><p>background: #54cae2;</p><p>background: linear-gradient(180deg, #6ed0e4 0%, #4abbe3 50%, #4ec2e5 100%);</p><p>}</p><p>.emoji_robot .emoji__siren {</p><p>position: absolute;</p><p>top: -4px;</p><p>left: 50%;</p><p>border-radius: 3px;</p><p>width: 18px;</p><p>height: 10px;</p><p>background-color: var(--color-dark);</p><p>margin-left: -9px;</p><p>}</p><p>.emoji_robot .emoji__siren::before {</p><p>content: '';</p><p>position: absolute;</p><p>top: -7px;</p><p>width: 14px;</p><p>height: 7px;</p><p>background: #f9dc2e;</p><p>background: radial-gradient(circle, #f9dc2e 0%, #f9a02e 100%);</p><p>margin-left: -7px;</p><p>left: 50%;</p><p>border-top-left-radius: 6px;</p><p>border-top-right-radius: 6px;</p><p>animation: flasher 0.5s ease-in-out infinite;}</p><p>@keyframes flasher {</p><p>0% {</p><p>transform: scale(1.2);</p><p>}</p><p>50% {</p><p>transform: scale(1);</p><p>}</p><p>100% {</p><p>transform: scale(1.2);</p><p>}</p><p>}</p><p>..emoji_robot .emoji__face {</p><p>width: 100%;</p><p>height: 100%;</p><p>overflow: hidden;</p><p>position: relative;</p><p>margin-top: -1px;</p><p>}</p><p>.emoji_robot .emoji__connector {</p><p>width: 26px;</p><p>height: 20px;</p><p>border-radius: 50%;</p><p>top: -9px;</p><p>position: absolute;</p><p>background-color: var(--color-dark);</p><p>left: 52px;</p><p>margin-left: -13px;</p><p>z-index: 10;</p><p>}</p><p>.emoji_robot .emoji__eyes {</p><p>position: relative;</p><p>display: flex;</p><p>justify-content: space-between;</p><p>top: 24px;</p><p>width: 58px;</p><p>margin: 0 auto;</p><p>}</p><p>.emoji_robot .emoji__eye {</p><p>position: relative;</p><p>display: flex;</p><p>align-items: center;</p><p>justify-content: center;</p><p>background-color: var(--color-white);</p><p>width: 28px;</p><p>height: 28px;</p><p>border-radius: 50%;</p><p>}</p><p>.emoji_robot .emoji__eye:after {</p><p>content: '';</p><p>width: 12px;</p><p>height: 12px;</p><p>background-color: var(--color-dark);</p><p>border-radius: 50%;</p><p>animation: eye-anima 0.5s ease infinite;</p><p>}</p><p>@keyframes eye-anima {</p><p>0% {</p><p>transform: scale(1.2);</p><p>}</p><p>50% {</p><p>transform: scale(1);</p><p>}</p><p>100% {</p><p>transform: scale(1.2);</p><p>}</p><p>}</p><p>.emoji_robot .emoji__mouth {</p><p>width: 60px;</p><p>margin: 0 auto;</p><p>height: 18px;</p><p>background: repeating-linear-gradient(90deg, var(--color-dark), var(--color-dark) 3px, #fff 3px, #fff 15px), var(--color-dark);</p><p>background-position: 6px;</p><p>border-radius: 8px;</p><p>top: 38px;position: relative;</p><p>animation: tooth-pos 13s linear infinite;</p><p>}</p><p>@keyframes tooth-pos {</p><p>to {</p><p>background-position: 200px;</p><p>}</p><p>}</p><p>.emoji_robot .emoji__nose {</p><p>position: absolute;</p><p>top: 50%;</p><p>left: 50%;</p><p>margin-top: 2px;</p><p>margin-left: -2px;</p><p>background-color: var(--color-dark);</p><p>transform: rotate(60deg) skewX(-30deg) scale(1, 0.866);</p><p>}</p><p>.emoji_robot .emoji__nose, .emoji_robot .emoji__nose::before, .emoji_robot .emoji__nose::after {</p><p>width: 7px;</p><p>height: 7px;</p><p>border-top-right-radius: 60%;</p><p>}</p><p>.emoji_robot .emoji__nose::before, .emoji_robot .emoji__nose::after {</p><p>content: '';</p><p>position: absolute;</p><p>background-color: inherit;</p><p>}</p><p>.emoji_robot .emoji__nose::before {</p><p>transform: rotate(-135deg) skewX(-45deg) scale(1.414, 0.707) translate(0, -50%);</p><p>}</p><p>.emoji_robot .emoji__nose::after {</p><p>transform: rotate(135deg) skewY(-45deg) scale(0.707, 1.414) translate(50%);</p><p>}</p><p></p><p>&lt;/style&gt;</p><p></p><p>&lt;!DOCTYPE html&gt;</p><p></p><p>&lt;html lang="en"&gt;</p><p></p><p>&lt;head&gt;</p><p></p><p>&lt;title&gt;Mickey Mouse&lt;/title&gt;</p><p></p><p>&lt;/head&gt;</p><p></p><p>&lt;body&gt;</p><p></p><p>&lt;div class="box"&gt;</p><p></p><p>&lt;div class="mouse mouse-lavender"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="mouse mouse-mint"&gt;&lt;/div&gt;</p><p></p><p>&lt;div class="mouse mouse-purple"&gt;&lt;/div&gt;</p><p></p><p>&lt;/div&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>body {</p><p></p><p>animation: background 3s infinite;</p><p></p><p>}</p><p></p><p>.box * {</p><p></p><p>position: absolute;</p><p></p><p>}</p><p></p><p>.box {</p><p></p><p>margin: 0 auto;</p><p></p><p>height: 300px;</p><p></p><p>width: 300px;</p><p></p><p>top: 50%;</p><p></p><p>transform: translateY(50%);</p><p></p><p>}</p><p></p><p>.mouse {</p><p></p><p>height: 100px;</p><p></p><p>width: 100px;</p><p></p><p>border-radius: 50%;</p><p></p><p>}</p><p></p><p>.mouse::before,</p><p></p><p>.mouse::after{</p><p></p><p>content: '';</p><p></p><p>position: absolute;</p><p></p><p>display: block;</p><p></p><p>height: 60px;</p><p></p><p>width: 60px;</p><p></p><p>border-radius: 50%;</p><p></p><p>}</p><p></p><p>.mouse::before {</p><p></p><p>top: -30%;</p><p></p><p>left: -30%;</p><p></p><p>}</p><p></p><p>.mouse::after {</p><p></p><p>top: -30%;</p><p></p><p>right: -30%;</p><p></p><p>}</p><p></p><p>.mouse-lavender {</p><p></p><p>background-color: #9b99ff;</p><p></p><p>top: 50%;</p><p></p><p>left: 0;</p><p></p><p>animation: beat 3s 1s infinite;</p><p></p><p>}</p><p></p><p>.mouse-lavender::before,</p><p></p><p>.mouse-lavender::after {</p><p></p><p>background-color: #9b99ff;</p><p></p><p>}</p><p></p><p>.mouse-mint {</p><p></p><p>background-color: #82fff3;</p><p></p><p>top: 50%;</p><p></p><p>right: 0;</p><p></p><p>animation: beat 3s 2s infinite;</p><p></p><p>}</p><p></p><p>.mouse-mint::before,</p><p></p><p>.mouse-mint::after {</p><p></p><p>background-color: #82fff3;</p><p></p><p>}</p><p></p><p>.mouse-purple {</p><p></p><p>background-color: #e682ff;</p><p></p><p>top: 0%;</p><p></p><p>left: 35%;</p><p></p><p>animation: beat 3s 3s infinite;</p><p></p><p>}</p><p></p><p>.mouse-purple::before,</p><p></p><p>.mouse-purple::after {</p><p></p><p>background-color: #e682ff;</p><p></p><p>}</p><p></p><p>@keyframes background2 {</p><p></p><p>0% {</p><p></p><p>background: #c3b8fc;</p><p></p><p>}</p><p></p><p>50% {</p><p></p><p>background: #ccfff6;</p><p></p><p>}</p><p></p><p>100% {</p><p></p><p>background: #feccff;</p><p></p><p>}</p><p></p><p>}</p><p></p><p>@keyframes beat {</p><p></p><p>0% {</p><p></p><p>transform: scale(1);</p><p></p><p>opacity: 1;</p><p></p><p>}</p><p></p><p>50% {</p><p></p><p>transform: scale(.6);opacity: .6;</p><p></p><p>}</p><p></p><p>}</p><p></p><p>&lt;/style&gt;</p><p></p><p>&lt;/body&gt;</p><p></p><p>&lt;/html&gt;</p><p></p><p>

Answered by FXTION
0

The first case is quite simple. You have the set A={1,2,3,4} and the set B={2,3,4}. Now, every subset of size m of A which contains 1 can be formed by joining a generic subset of B of size m−1 with the set {1}.

In other word, let n=4 and m=2 (as you propose), then (n−1)!(m−1)!(n−1−m+1)!=3!1!2!=3 is the number of the subset of size 1 of B and then this is the number of subset of A of size 2 which contains 1.

I guess the second case can be solved with similar arguments. Just to give an idea...

Let A be a set (without repeated elements). For example A={1,2,4}.

Suppose that each element of A has a multiplicity, say μ(x) where x is an element of A . In the example, μ(1)=3, μ(2)=μ(4)=1. Suppose also that you remove an element x from the set A and you obtain the set B=A∖{x}. Let nA=μ(x) and nB=∑y≠xμ(y). Clearly nA+nB=n.

When you have to form a group of m element extracted from A (with repeated elements) then you can say that:

I extract m elements from collection B (if m≤nB)

I extract m−1 elements from collection B and 1 from collection {x} (if m−1≤nB and 1≤nA)

I extract m−2 elements from collection B and 2 from collection {x} (if m−2≤nB and 2≤nA)

and so on...

and so on

Each case can be easily computed using binomial coefficients so the solution is straight forward!

NOTE I use collection to distinguish from set. A set has unique elements, a collection can have repeated elements. In my answer I use a set or a collection depending from the context.

A as set: A={1,2,4}

A as collection: A={1,2,1,1,4}

B as set: B={2,4}

B as collection: B={2,4}

{x} as set: {x}={1}

{x} as collection: {x}={1,1,1}

Similar questions