Physics, asked by pooniasaroj94, 4 months ago

A wind blows on a m=4 kg mass that hangs from a 2 m long string by exerting a constant horizontal force of F=5N.
What is ils equilibrium height, h?

Answers

Answered by nirman95
3

Given:

A wind blows on a m=4 kg mass that hangs from a 2 m long string by exerting a constant horizontal force of F=5N.

To find:

Equilibrium height?

Calculation:

After dividing the components, we can say:

1) \: T \sin( \theta)  = F

2) \: T \cos( \theta)  = mg

Dividing the Equations:

 \implies \:  \tan( \theta)  =  \dfrac{F}{mg}

 \implies \:  \tan( \theta)  =  \dfrac{5}{40}

 \implies \:  \tan( \theta)  =  \dfrac{1}{8}

Now, we can say:

 \cos( \theta)  =  \dfrac{8}{ \sqrt{65} }

  \implies \:  \dfrac{x}{r}  =  \dfrac{8}{ \sqrt{65} }

  \implies \:  \dfrac{x}{2}  =  \dfrac{8}{ \sqrt{65} }

  \implies \:  x  =  \dfrac{16}{ \sqrt{65} }

  \implies \:  x  =  1.98 \: m

So, equilibrium height will be :

 \implies \: h = 2 - 1.98 = 0.02m

So, equilibrium height is 0.02 metres.

Attachments:
Answered by krohit68272
0

Explanation:

Given:

A wind blows on a m=4 kg mass that hangs from a 2 m long string by exerting a constant horizontal force of F=5N.

To find:

Equilibrium height?

Calculation:

After dividing the components, we can say:

1) \: T \sin( \theta) = F1)Tsin(θ)=F

2) \: T \cos( \theta) = mg2)Tcos(θ)=mg

Dividing the Equations:

\implies \: \tan( \theta) = \dfrac{F}{mg} ⟹tan(θ)=

mg

F

\implies \: \tan( \theta) = \dfrac{5}{40} ⟹tan(θ)=

40

5

\implies \: \tan( \theta) = \dfrac{1}{8} ⟹tan(θ)=

8

1

Now, we can say:

\cos( \theta) = \dfrac{8}{ \sqrt{65} } cos(θ)=

65

8

\implies \: \dfrac{x}{r} = \dfrac{8}{ \sqrt{65} } ⟹

r

x

=

65

8

\implies \: \dfrac{x}{2} = \dfrac{8}{ \sqrt{65} } ⟹

2

x

=

65

8

\implies \: x = \dfrac{16}{ \sqrt{65} } ⟹x=

65

16

\implies \: x = 1.98 \: m⟹x=1.98m

So, equilibrium height will be :

\implies \: h = 2 - 1.98 = 0.02m⟹h=2−1.98=0.02m

So, equilibrium height is 0.02 metres.

Similar questions