A wind blows on a m=4 kg mass that hangs from a 2 m long string by exerting a constant horizontal force of F=5N.
What is ils equilibrium height, h?
Answers
Given:
A wind blows on a m=4 kg mass that hangs from a 2 m long string by exerting a constant horizontal force of F=5N.
To find:
Equilibrium height?
Calculation:
After dividing the components, we can say:
Dividing the Equations:
Now, we can say:
So, equilibrium height will be :
So, equilibrium height is 0.02 metres.
Explanation:
Given:
A wind blows on a m=4 kg mass that hangs from a 2 m long string by exerting a constant horizontal force of F=5N.
To find:
Equilibrium height?
Calculation:
After dividing the components, we can say:
1) \: T \sin( \theta) = F1)Tsin(θ)=F
2) \: T \cos( \theta) = mg2)Tcos(θ)=mg
Dividing the Equations:
\implies \: \tan( \theta) = \dfrac{F}{mg} ⟹tan(θ)=
mg
F
\implies \: \tan( \theta) = \dfrac{5}{40} ⟹tan(θ)=
40
5
\implies \: \tan( \theta) = \dfrac{1}{8} ⟹tan(θ)=
8
1
Now, we can say:
\cos( \theta) = \dfrac{8}{ \sqrt{65} } cos(θ)=
65
8
\implies \: \dfrac{x}{r} = \dfrac{8}{ \sqrt{65} } ⟹
r
x
=
65
8
\implies \: \dfrac{x}{2} = \dfrac{8}{ \sqrt{65} } ⟹
2
x
=
65
8
\implies \: x = \dfrac{16}{ \sqrt{65} } ⟹x=
65
16
\implies \: x = 1.98 \: m⟹x=1.98m
So, equilibrium height will be :
\implies \: h = 2 - 1.98 = 0.02m⟹h=2−1.98=0.02m