Math, asked by sachin6951, 1 year ago

A window is in the form a rectangle surmounted by a semicircular opening the total perimeter of the window is 10m.find the dimensions of the window to admit maximum light through the whole opening. plz concept main batna​

Answers

Answered by manya967
1
Q)

A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening.

Homework help Revision notes Donate



A)


Step 1:

Perimeter of the window when the width of window is xx and 2r2r is the length.

⇒2x+2r+12⇒2x+2r+12×2πr×2πr=10=10[Given]

2x+2r+πr=102x+2r+πr=10

2x+r(2+π)=102x+r(2+π)=10------(1)

For admitting the maximum light through the opening the area of the window must be maximum.

A=A=Sum of areas of rectangle and semi-circle.

Step 2:

Area of circle=πr2πr2

Area of rectangle=l×b=2×r×xl×b=2×r×x

A=2rx+12πr2A=2rx+12πr2

=r[10−(π+2)r]+12πr2=r[10−(π+2)r]+12πr2

=10r−(12=10r−(12π+2)r2π+2)r2

For maximum area dAdrdAdr=0=0 and d2Adr2d2Adr2is -ve.

⇒10−(π+4)r=0⇒10−(π+4)r=0

(π+4)r=10(π+4)r=10

r=10π+4r=10π+4

Step 3:

d2Adr2d2Adr2=−(π+4)=−(π+4)[Differentiating with respect to r]

(i.e)d2Adr2d2Adr2 is -ve for r=10π+4r=10π+4

⇒A⇒A is maximum.

From (1) we have

⇒10=(π+2)r+2x⇒10=(π+2)r+2x

Put the value of rr in (1)

10=(π+2)×(10π+4)10=(π+2)×(10π+4)+2x+2x

10=10(π+2)π+410=10(π+2)π+4+2x+2x

=10(π+2)+2x(π+4)π+4=10(π+2)+2x(π+4)π+4

10(π+4)=10(π+2)+2x(π+4)10(π+4)=10(π+2)+2x(π+4)

10(π+4)−10(π+2)=2x(π+4)10(π+4)−10(π+2)=2x(π+4)

10π+40−10π−20=2x(π+4)10π+40−10π−20=2x(π+4)

20=2x(π+4)20=2x(π+4)

10=x(π+4)10=x(π+4)

x=10π+4x=10π+4

Step 4:

Length of rectangle=2r=2(10π+4)=2r=2(10π+4)

=20π+4=20π+4

breadth=10π+4

sachin6951: thanks bro
manya967: np problem
Similar questions