Physics, asked by mazharpatujo0, 11 months ago

A wire carries a current of 1.A. How many clcc.
trons pass a point in the wire an each second?​

Answers

Answered by ShivamKashyap08
7

Answer:

  • No. of Electrons = 6.25 × 10¹ .

Given:

  1. Current (I) = 1 Ampere.
  2. Time taken (t) = 1 seconds.

Explanation:

\rule{300}{1.5}

From the Charge & Current relation we Know,

\large{\boxed{\bold{I = \dfrac{Q}{t}}}}

\bold{Here}\begin{cases}\text{I represents Current} \\ \text{Q represents Charge} \\ \text{t represents Time taken}\end{cases}

Substituting the values,

\large{\boxed{\bold{I = \dfrac{Q}{t}}}}

\large{\tt \hookrightarrow 1 \; A = \dfrac{Q}{1 \sec}}

\large{\tt \hookrightarrow 1  = \dfrac{Q}{1}}

\large{\tt \hookrightarrow Q = 1 \times 1}

\large{\boxed{\tt Q = 1 \: Columb}}

\rule{300}{1.5}

\rule{300}{1.5}

From the Relation,

\large{\boxed{\bold{ne = Q}}}

\bold{Here}\begin{cases}\text{n represents No. of Electrons} \\ \text{Q represents Charge} \\ \text{e represents Charge of electron}\end{cases}

Substituting the values,

\large{\boxed{\bold{ne = Q}}}

  • Charge on Electron = 1.6 × 10⁻¹⁹ Columb.

\large{\tt \hookrightarrow n \times 1.6 \times 10^{-19} = 1C}

As we Got Charge as 1 Columb in the Above equation

\large{\tt \hookrightarrow n \times 1.6 \times 10^{-19} = 1C}

\large{\tt \hookrightarrow n = \dfrac{1}{1.6 \times 10^{-19}}}

\large{\tt \hookrightarrow n = \dfrac{1 \times 10^{19}}{1.6}}

\large{\tt \hookrightarrow n = \dfrac{10 \times 10^{19}}{16}}

\large{\tt \hookrightarrow n = \dfrac{\cancel{10} \times 10^{19}}{\cancel{16}}}

\large{\tt \hookrightarrow n = \dfrac{5 \times 10^{19}}{8}}

\large{\tt \hookrightarrow n = 0.625 \times 10^{19}}

\huge{\boxed{\boxed{\tt n = 6.25 \times 10^{18}}}}

6.25 × 10¹ Electrons Flow Through 1 A current.

\rule{300}{1.5}

Similar questions