A wire having a mass of 1 kg possess a resistance of 0.1 0. If the resistivity of
material of wire is 10-7 Om and density of material of wire is 104 kg/mº, then
length of wire is
Answers
The correct question is:
A wire having a mass of 1kg possess a resistance of 0.1 ohm. if the resistivity of material of wire is 10^-7 ohm m and density of material of wire is 10^4 kg/m^3, then the length of the wire is?
Given:
Mass of the wire = 1 kg
Resistance = 0.1 ohm
Resistivity of the wire = 10^-7
Density of the material = 10^4 kg/m³
To find:
Length of the wire.
Solution:
Volume = m/d =1/ 10^4 = 10^-4 m³
Where m = mass of wire
d = density
Volume = A*l = 10^-4 m³
Where A = area
l = length of wire
Resistance = pl/A ohms
Where p = resistivity
l = length of wire
A = area of wire
0.1 = 10^-7 * l/ A
Since A = 10^-4/l, Putting the value of A we get:
0.1 = 10^-7 * l²/ 10^-4
100 = I²
l = 10 m
Therefore the length of the wire is 10 m.
Given:
A wire having a mass of 1 kg possess a resistance of 0.1 ohm. The resistivity of material of wire is 10^(-7) mho and density of material of wire is 10^(4) kg/m³.
To find:
Length of wire.
Calculation:
First of all, let's calculate the volume of the wire:
Now, we know that for a cylinder ,
Now, resistance is given as :
So, length of wire is 10 metres.