Physics, asked by tanvitamrakar7160, 9 months ago

A wire of area of cross-section 1mm^2 carries a current of 2A. If number of electrons per unit volume of wire is 10^29, then the drift speed of electrons in the wire is?

Answers

Answered by Anonymous
5

Given :

  • Area of Cross-section of wire(A)=1mm²
  • Current (i) = 2A
  • Electron density (N) = {\rm 10^{29}}

To Find :

  • Drift speed {\rm (v_d)}

Formula Used :

\bullet\underline{\boxed{\sf i = NeAv_d}}

Solution :

Convert area of cross-section from mm² to

\implies{\sf A = 1mm^2}

\implies{\bf A = 10^{-6}m^2 }

______________________________

\implies{\sf i =NeAv_d }

e = 1.6 × {\rm 10^{-19}\:C}

\implies{\sf 2 = 10^{29} \times 1.6 \times 10^{-19} \times 10^{-6} \times v_d}

\implies{\sf v_d = \dfrac{2}{1.6 \times 10^{-19} \times 10^{29} \times 10^{-6}} }

\implies{\sf v_d = \dfrac{2}{1.6 \times 10^4}}

\implies{\sf v_d = 1.25 \times 10^{-4}}

\implies{\sf v_d = 0.125 \times 10^{-3}}

\implies{\bf v_d = 0.125 \: mm/s }

Answer :

Drift speed of electron in the wire is 0.125 mm/s

Similar questions