A wire of length 300m and area of cross section 1mm^2 has a resistance of 3kohms. Find the resistivity of the material...
Answers
Answered by
0
Answer:
Question :
If 3x-y = 12 ,what is the value \frac{8{}^{x}}{2{}^{y}}
2
y
8
x
Formulas :
1)a {}^{m} \times a {}^{n} = a {}^{m + n}1)a
m
×a
n
=a
m+n
2) \frac{a {}^{m} }{a {}^{n} } = a {}^{m - n}2)
a
n
a
m
=a
m−n
3)a {}^{m} \times b {}^{m} = (ab) {}^{m}3)a
m
×b
m
=(ab)
m
Solution :
Given: \sf\:3x-y=123x−y=12
We have to find the value of \frac{8{}^{x}}{2{}^{y}}
2
y
8
x
_______________________
\sf \dfrac{8 {}^{x} }{2 {}^{y} }
2
y
8
x
= \sf \dfrac{(2 {}^{3} ) {}^{x} }{2 {}^{y} }=
2
y
(2
3
)
x
= \sf \dfrac{2 {}^{3x} }{2 {}^{y} }=
2
y
2
3x
we know that \bf\:\frac{a{}^{m}}{a{}^{n}}=a{}^{m-n}
a
n
a
m
=a
m−n
= \sf 2 {}^{3x - y}=2
3x−y
\sf\:3x-y=123x−y=12 ( Given )
= 2 {}^{12}=2
12
Therefore, correct option is a)\sf\:2{}^{12}2
12
Thanks
Similar questions