A wire of length l carries current i along the y axis and magnetic field B= b (vector i+vector j +vector k)/root 3 .Now caculate magnetic force acting on the wire
Answers
A wire of length l carries current i along the y axis and magnetic field B= b (vector i+vector j +vector k)/root 3 .Now caculate magnetic force acting on the wire....
A wire of length l carries current i along y-axis . so, position of wire,
magnetic field
we know, formula of magnetic force,
= i [ (l)j × b(i + j + k)/√3 ]
= bil/√3 [ j × (i + j + k)]
= bil/√3 [ j × i + j × j + j × k ]
= bil/√3 [ -k + 0 + i ]
= bil/√3 (i - k)
hence, magnetic force
Answer:
A wire of length l carries current i along the y axis and magnetic field B= b (vector i+vector j +vector k)/root 3 .Now caculate magnetic force acting on the wire....
A wire of length l carries current i along y-axis . so, position of wire, \vec{L}=l\hat{j}
L
=l
j
^
magnetic field \vec{B}=b(\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}})
B
=b(
3
i
^
+
j
^
+
k
^
)
we know, formula of magnetic force, \vec{F}=i(\vec{L}\times\vec{B})
F
=i(
L
×
B
)
= i [ (l)j × b(i + j + k)/√3 ]
= bil/√3 [ j × (i + j + k)]
= bil/√3 [ j × i + j × j + j × k ]
= bil/√3 [ -k + 0 + i ]
= bil/√3 (i - k)
hence, magnetic force \vec{F}=\frac{bil}{\sqrt{3}}(\hat{i}-\hat{k})
F
=
3
bil
(
i
^
−
k
^
)