Physics, asked by DanteZBuB699, 1 year ago

a wire of resistance r is cut into five equal peices. these pieces are connected in parallel and the equivalent resistance are rn. find the ratio of r/rn

Answers

Answered by JayeshPakhrani1
2
I hope u are getting my handwritting if not then please tell me
Attachments:
Answered by Anonymous
7

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

\tt Given \begin{cases} \sf{Wire \:  is \: cutted \: into  \: 5 \: equal \: parts} \\ \sf{Resistance \: of \: wire \: is \: R} \end{cases}

_____________________________

To Find :

 \hookrightarrow \sf{ratio \: of \:  \frac{r}{r_{n} } }

_____________________________

Solution :

Resistance of price of length L/5 = R/5

So,

The equivalent resistance of the 5 wires in parallel is Rn. Then,

We know Formula of resistance in parallel

\Large \implies {\boxed{\boxed{\sf{\frac{1}{R_{n}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} ......... \frac{1}{R'} }}}}

(Putting Values)

 \sf{\rightarrow \frac{1}{R_n}  =  \frac{ \frac{1}{R} }{5} + \frac{ \frac{1}{R} }{5} +  \frac{ \frac{1}{R} }{5} +   \frac{ \frac{1}{R} }{5} +  \frac{ \frac{1}{R} }{5} +  } \\  \\  \sf{\rightarrow  \frac{1}{R_n} =  \frac{5}{R_n}  +  \frac{5}{R_n} +  \frac{5}{R_n} +  \frac{5}{R_n} +  \frac{5}{R_n}    } \\  \\  \sf{{\rightarrow \frac{1}{R_n} =  \frac{5 + 5 + 5 + 5 + 5}{R} } } \\  \\  \sf{\rightarrow \frac{1}{R_n}  =  \frac{25}{R} } \\  \\  \sf{\rightarrow \frac{R}{R_n} =  \frac{25}{1}  } \\  \\  \Large{\leadsto {\underline{\boxed{\sf{R : R_n = 25 : 1}}}}}

____________________________

#answerwithquality

#BAL

Similar questions